zoukankan      html  css  js  c++  java
  • 如何保证Redis与数据库的数据一致性

    一般来说,只要你用到了缓存,不管是Redis还是memcache,就可能会涉及到数据库缓存与数据的一致性问题,这里我们以Redis为例。

    我们该如何保证Redis与数据库的一致性呢?

     So easy:

    更新的时候,先更新数据库,然后再删除缓存。
    读的时候,先读缓存;如果没有的话,就读数据库,同时将数据放入缓存,并返回响应。
    乍一看,一致性问题貌似很好的得到了解决。但仔细一想,你会发现还是有问题:如果先更新了数据库,删除缓存的时候失败了怎么办?那么数据库中是新数据,缓存中是老数据,数据出现不一致了。

    改进方案:

    先删除缓存,后更新数据库。因为即使后面更新数据库失败了,缓存是空的,读的时候会从数据库中重新拉,虽然都是旧数据,但数据是一致的。

    所以方案就变成了:

    更新的时候,先删除缓存,然后再更新数据库。
    读的时候,先读缓存;如果没有的话,就读数据库,同时将数据放入缓存,并返回响应。
     

    到这里是不是问题就得到了彻底的解决了呢?其实并没有,在高并发的场景下,会出现这样的情况:数据发生了变更,先删除了缓存,然后去修改数据库。此时还没来得及修改,一个请求过来了,去读缓存,发现缓存空了,去读数据库,读到了准备修改前的旧数据,并且把旧数据放到了缓存。随后,数据变更程序完成了数据库的修改。那么完了,这个时候发生数据不一致了......

     

    解决方案:

    针对这种情况,可以先把“修改DB”的操作放到一个JVM队列,后面读请求过来之后,“更新缓存”的操作也放进同一个JVM队列,每个队列,对于一个作业线程,按照队列的顺序,依次执行相关操作,这样就可以保证“更新缓存”一定是在DB修改之后,以保证数据一致性,具体如下图所示:

     

    细想该方案,其实还有几个优化点

    1、读请求过多的时候,队列里面会有多个“更新缓存”操作串在一起,其实是没有意义的,往队列里面塞数据的时候可以先判断一下,有的话就不用再塞进去了

     

    2、遇到更新DB比较频繁的业务场景时,可能会导致读请求长时间阻塞,这个时候可以通过扩机器增加吞吐量,或者可以先返回一个旧的值。

  • 相关阅读:
    461. Hamming Distance
    342. Power of Four
    326. Power of Three
    368. Largest Divisible Subset java solutions
    95. Unique Binary Search Trees II java solutions
    303. Range Sum Query
    160. Intersection of Two Linked Lists java solutions
    88. Merge Sorted Array java solutions
    67. Add Binary java solutions
    14. Longest Common Prefix java solutions
  • 原文地址:https://www.cnblogs.com/cnndevelop/p/12091974.html
Copyright © 2011-2022 走看看