Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2 Output: 8 Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
0 < prices.length <= 50000
.0 < prices[i] < 50000
.0 <= fee < 50000
.
买卖股票的最佳时机含手续费。这是股票系列的最后一题了。这道题允许你交易多次,但是每次交易的时候是有一个手续费,用fee表示。依然是请你返回获得利润的最大值。
思路依然是动态规划。还是创建一个二维的DP数组,dp[i][j]表示第 i 天持有和不持有股票的最大收益。j 只有可能是0或1,表示不持有股票和持有股票。这道题多的一个变量fee可以放在买入的时候,可以把他理解为成本的一部分。其他部分跟版本二的动态规划解法没有区别。分享一个写的很好的题解。
时间O(n)
空间O(mn)
Java实现
1 class Solution { 2 public int maxProfit(int[] prices, int fee) { 3 int len = prices.length; 4 // corner case 5 if (len < 2) { 6 return 0; 7 } 8 9 // dp[i][j] 表示 [0, i] 区间内,到第 i 天(从 0 开始)状态为 j 时的最大收益' 10 // j = 0 表示不持股,j = 1 表示持股 11 // 并且规定在买入股票的时候,扣除手续费 12 int[][] dp = new int[len][2]; 13 dp[0][0] = 0; 14 dp[0][1] = -prices[0] - fee; 15 for (int i = 1; i < len; i++) { 16 dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); 17 dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee); 18 } 19 return dp[len - 1][0]; 20 } 21 }