There are n
soldiers standing in a line. Each soldier is assigned a unique rating
value.
You have to form a team of 3 soldiers amongst them under the following rules:
- Choose 3 soldiers with index (
i
,j
,k
) with rating (rating[i]
,rating[j]
,rating[k]
). - A team is valid if: (
rating[i] < rating[j] < rating[k]
) or (rating[i] > rating[j] > rating[k]
) where (0 <= i < j < k < n
).
Return the number of teams you can form given the conditions. (soldiers can be part of multiple teams).
Example 1:
Input: rating = [2,5,3,4,1] Output: 3 Explanation: We can form three teams given the conditions. (2,3,4), (5,4,1), (5,3,1).
Example 2:
Input: rating = [2,1,3] Output: 0 Explanation: We can't form any team given the conditions.
Example 3:
Input: rating = [1,2,3,4] Output: 4
Constraints:
n == rating.length
1 <= n <= 200
1 <= rating[i] <= 10^5
统计作战单位数。
n 名士兵站成一排。每个士兵都有一个 独一无二 的评分 rating 。
每 3 个士兵可以组成一个作战单位,分组规则如下:
从队伍中选出下标分别为 i、j、k 的 3 名士兵,他们的评分分别为 rating[i]、rating[j]、rating[k]
作战单位需满足: rating[i] < rating[j] < rating[k] 或者 rating[i] > rating[j] > rating[k] ,其中 0 <= i < j < k < n
请你返回按上述条件可以组建的作战单位数量。每个士兵都可以是多个作战单位的一部分。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-number-of-teams
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题不涉及算法。我这里提供一个N平方的思路。这道题是在求一个三元组,满足下标i < j < k同时三个下标对应的rating是单调增或者是单调减。暴力解是O(n^3)的,需要对每一种i,j,k的组合进行比较看看是否符合条件。
优化的思路是O(n^2)的。这里我们对每个下标 j 记录他的左边有多少比他小的元素和他右边有多少比他大的元素。这样,包含 ratings[j] 的组合数 = j左边比他小的元素个数 * j右边比他大的元素个数。这是单调增的情况。
同时单调减的组合数 = j左边比他大的元素个数 * j右边比他小的元素个数。
时间O(n^2)
空间O(1)
Java实现
1 class Solution { 2 public int numTeams(int[] rating) { 3 int res = 0; 4 for (int i = 1; i < rating.length - 1; i++) { 5 int leftBigger = 0; 6 int leftSmaller = 0; 7 for (int j = 0; j < i; j++) { 8 if (rating[j] > rating[i]) { 9 leftBigger++; 10 } 11 if (rating[j] < rating[i]) { 12 leftSmaller++; 13 } 14 } 15 16 int rightBigger = 0; 17 int rightSmaller = 0; 18 for (int j = i + 1; j < rating.length; j++) { 19 if (rating[j] > rating[i]) { 20 rightBigger++; 21 } 22 if (rating[j] < rating[i]) { 23 rightSmaller++; 24 } 25 } 26 res += leftBigger * rightSmaller + leftSmaller * rightBigger; 27 } 28 return res; 29 } 30 }