zoukankan      html  css  js  c++  java
  • 机器学习、神经网络与深度学习

    典型的机器学习一般思路:预处理、特征提取、特征选择、推理预测或者识别。深度学习能够尽可能地使用算法解决预处理、特征提取、特征选择。

    传统机器学习里,拿什么作为特征对学习影响比较大。特征多增加计算量,如果选择对学习目标有干扰的特征会干扰学习效果。需要人的经验来选择特征。深度学习可以用算法去解决。

    深度学习是一种基于无监督特征学习和特征层次结构的学习模型,其实是对神经网络模型的拓展。

    传统机器学习使用HOG提取低层面特征,再用DPM组件模型提取中层面特征,再用SVM进行分类。而深度学习直接进行端到端的处理,包含自动提取特征和分类,高维的权重参数。

    image

    深度学习与神经网络的区别

    神经网络 深度学习
    网络架构 3层以内 可达上千层
    层间连接 通常是全连接 形式多样:共享权值、跨层的反馈
    目标函数 差的平方和 MSE 交叉熵 CE
    激活函数 Sigmoid、tanh等 ReLU等
    梯度下降 基本的梯度下降GD等 Adam 自适应矩估计等
    避免过适应 凭经验 早期停止、Dropout等
  • 相关阅读:
    AVAudioSession
    (whh仅供自己参考)进行ip网络请求的步骤
    1、大部分社交平台接口不支持https协议。
    怎样在官网上下载xcode7.2
    ios9 http请求失败的问题
    真机测试最详细的步骤
    svn的初级使用
    framework not found -fno-arc编译错误
    单例对象
    IOS6学习笔记(三)
  • 原文地址:https://www.cnblogs.com/cntech/p/15363511.html
Copyright © 2011-2022 走看看