zoukankan      html  css  js  c++  java
  • 将keras的h5模型转换为tensorflow的pb模型

    h5_to_pb.py
    
    from keras.models import load_model
    import tensorflow as tf
    import os 
    import os.path as osp
    from keras import backend as K
    #路径参数
    input_path = 'input path'
    weight_file = 'weight.h5'
    weight_file_path = osp.join(input_path,weight_file)
    output_graph_name = weight_file[:-3] + '.pb'
    #转换函数
    def h5_to_pb(h5_model,output_dir,model_name,out_prefix = "output_",log_tensorboard = True):
        if osp.exists(output_dir) == False:
            os.mkdir(output_dir)
        out_nodes = []
        for i in range(len(h5_model.outputs)):
            out_nodes.append(out_prefix + str(i + 1))
            tf.identity(h5_model.output[i],out_prefix + str(i + 1))
        sess = K.get_session()
        from tensorflow.python.framework import graph_util,graph_io
        init_graph = sess.graph.as_graph_def()
        main_graph = graph_util.convert_variables_to_constants(sess,init_graph,out_nodes)
        graph_io.write_graph(main_graph,output_dir,name = model_name,as_text = False)
        if log_tensorboard:
            from tensorflow.python.tools import import_pb_to_tensorboard
            import_pb_to_tensorboard.import_to_tensorboard(osp.join(output_dir,model_name),output_dir)
    #输出路径
    output_dir = osp.join(os.getcwd(),"trans_model")
    #加载模型
    h5_model = load_model(weight_file_path)
    h5_to_pb(h5_model,output_dir = output_dir,model_name = output_graph_name)
    print('model saved')
    

     将转换成的pb模型进行加载

    load_pb.py
    
    import tensorflow as tf
    from tensorflow.python.platform import gfile
    
    def load_pb(pb_file_path):
        sess = tf.Session()
        with gfile.FastGFile(pb_file_path, 'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
            sess.graph.as_default()
            tf.import_graph_def(graph_def, name='')
    
        print(sess.run('b:0'))
        #输入
        input_x = sess.graph.get_tensor_by_name('x:0')
        input_y = sess.graph.get_tensor_by_name('y:0')
        #输出
        op = sess.graph.get_tensor_by_name('op_to_store:0')
        #预测结果
        ret = sess.run(op, {input_x: 3, input_y: 4})
        print(ret)
  • 相关阅读:
    代理(reGeorg)
    弱口令爆破技巧
    无法解析@NotBlank
    LC 1723. Find Minimum Time to Finish All Jobs (dp+二分)
    帝国cms 联合多张表查询
    php 根据白名单替换字符转中的链接 封装的函数
    php 正则匹配域名后的整个链接和只匹配域名
    JVM系列(一):垃圾回收之MinorGC,MajorGC和FullGC的区别
    spring事务的执行原理
    java基础系列(八):Semphore,CountDownLatch和CyclicBarrier的使用
  • 原文地址:https://www.cnblogs.com/cnugis/p/12218103.html
Copyright © 2011-2022 走看看