({ m fish})
20分:
六个for,点积判锐角钝角。
#include <vector>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define uint unsigned int
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO
")
#define rep(i, a, b) for (register uint (i) = (a); (i) <= (b); ++ (i))
#define dep(i, a, b) for (register uint (i) = (a); (i) >= (b); -- (i))
namespace io {
const char endl = '
';
template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
struct Stream {
template<class T> Stream operator>> (T &x) {
register int f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x *= f, *this;
}
Stream operator>> (char *str) { return scanf("%s", str), *this; }
template<class T> Stream operator<< (T x) {
static char out[35]; static uint top = 0;
if (x < 0) x = -x, out[++top] = '-';
while (out[++top] = x % 10 ^ 48, x /= 10, x);
while (putchar(out[top--]), top);
return *this;
}
Stream operator<< (char *str) { return printf("%s", str), *this; }
Stream operator<< (char ch) { return putchar(ch), *this; }
} cin, cout;
}
const int N = 20;
struct Vector {
int x, y;
Vector() {}
Vector(int _x, int _y) { x = _x, y = _y; }
Vector operator-(Vector B) { return Vector(x - B.x, y - B.y); }
Vector operator+(Vector B) { return Vector(x + B.x, y - B.y); }
int operator*(Vector B) { return x * B.x + y * B.y; }
int len2() { return x * x + y * y; }
} P[N];
int main() {
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
register int n, ans = 0;
std::cin >> n;
rep(i, 1, n) std::cin >> P[i].x >> P[i].y;
rep(A, 1, n) rep(B, 1, n) rep(C, 1, n) rep(D, 1, n) rep(E, 1, n) rep(F, 1, n) {
if (A == B || A == C || A == D || A == E || A == F) continue;
if (B == C || B == D || B == E || D == F) continue;
if (C == D || C == E || C == F) continue;
if (D == E || D == F) continue;
if (E == F) continue;
if ((P[B] - P[A]) * (P[D] - P[A]) > 0 and
(P[D] - P[A]) * (P[C] - P[A]) > 0 and
(P[B] - P[D]) * (P[A] - P[D]) > 0 and
(P[C] - P[D]) * (P[A] - P[D]) > 0 and
(P[A] - P[D]) * (P[E] - P[D]) < 0 and
(P[A] - P[D]) * (P[F] - P[D]) < 0 and
(P[A] - P[B]).len2() == (P[A] - P[C]).len2() and
(P[B] - P[D]).len2 ()== (P[D] - P[C]).len2() and
(P[E] - P[D]).len2() == (P[D] - P[F]).len2()) {
ans ++;
}
}
io::cout << ans << io::endl;
return 0;
}
40分:
对着题面中的图讲,
第一部分:
枚举 (A, D)
然后再枚举 P
(形如E,F的点)将所有 PD
满足 角ADP
为钝角的 PD
的长扔进一个 vector
,
然后 sort
,用 f[A][D]
表示 AD
为脊柱,的尾巴数量,由于 sort
了,很好计算出来。
再用 map
实现一个 AD斜率->vector
的映射,vector存斜率为这个的(A, D)。
第二部分:
枚举 (B, C)
,求出 AD斜率
(垂直) ,到 对应的斜率的vector
(map映射)中寻找符合题意的 (A, D)
,然后 Ans
加上 f[A][D]
.
根据题意,最后 Ans *= 4.
#include <vector>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define uint unsigned int
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO
")
#define rep(i, a, b) for (register uint i = a, i##end = b; i <= i##end; ++ i)
#define dep(i, a, b) for (register uint i = a, i##end = b; i >= i##end; -- i)
namespace io {
const char endl = '
';
template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
struct Stream {
template<class T> Stream operator>> (T &x) {
x = 0; register int f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x *= f, *this;
}
Stream operator>> (char *str) { return scanf("%s", str), *this; }
template<class T> Stream operator<< (T x) {
static char out[35]; static uint top = 0;
if (x < 0) x = -x, out[++top] = '-';
while (out[++top] = x % 10 ^ 48, x /= 10, x);
while (putchar(out[top--]), top);
return *this;
}
Stream operator<< (char *str) { return printf("%s", str), *this; }
Stream operator<< (char ch) { return putchar(ch), *this; }
} cin, cout;
}
const int N = 400 + 10;
struct vector {
int x, y;
vector(int x = 0, int y = 0) : x(x), y(y) {}
vector operator-(const vector B) { return vector(x - B.x, y - B.y); }
LL operator*(const vector B) { return 1ll * x * B.x + 1ll * y * B.y; }
LL len2() { return 1ll * x * x + 1ll * y * y; }
} p[N];
const uint INF = 0x3f3f3f3f;
int n;
LL f[N][N];
std::vector<int> buc;
std::map<std::pair<int, int>, std::vector<std::pair<int, int> > > Map;
int main() {
#ifndef ONLINE_JUDGE
freopen("fish.in", "r", stdin);
freopen("fish.out", "w", stdout);
#endif
io::cin >> n;
rep(i, 1, n) io::cin >> p[i].x >> p[i].y;
rep(A, 1, n) {
rep(D, 1, n) if (A != D) {
buc.clear();
rep(P, 1, n) if (P != A and P != D) {
if ((p[P] - p[D]) * (p[A] - p[D]) < 0) {
buc.push_back((p[P] - p[D]).len2());
}
}
std::sort(buc.begin(), buc.end());
uint i = 0;
while (i < buc.size()) {
uint j = i;
while(i < buc.size() - 1 and buc[i] == buc[i + 1]) {
i++;
}
f[A][D] += 1ll * (i - j + 1) * (i - j) / 2;
i++;
}
int up = p[D].y - p[A].y, down = p[D].x - p[A].x, gcd;
gcd = std::__gcd(abs(up), abs(down));
if (gcd)
Map[std::make_pair(up / gcd, down / gcd)].push_back(std::make_pair(A, D));
else if (up == 0)
Map[std::make_pair(0, INF)].push_back(std::make_pair(A, D));
else
Map[std::make_pair(INF, 0)].push_back(std::make_pair(A, D));
}
}
LL Ans = 0;
rep(B, 1, n) {
rep(C, 1, n) {
int up = p[B].y - p[C].y, down = p[B].x - p[C].x, gcd;
gcd = std::__gcd(abs(up), abs(down));
std::pair<int, int> Kad;
if (gcd)
Kad = std::make_pair(-down / gcd, up / gcd);
else if (up == 0)
Kad = std::make_pair(INF, 0);
else
Kad = std::make_pair(0, INF);
for (auto i : Map[Kad]) {
register uint A = i.first, D = i.second;
if ((p[B] - p[A]).len2() == (p[C] - p[A]).len2() and
(p[B] - p[D]).len2() == (p[C] - p[D]).len2() and
(p[B] - p[A]) * (p[D] - p[A]) > 0 and
(p[C] - p[A]) * (p[D] - p[A]) > 0 and
(p[B] - p[D]) * (p[A] - p[D]) > 0 and
(p[C] - p[D]) * (p[A] - p[D]) > 0) {
Ans += f[A][D];
// io::cout << A << ' ' << B << ' ' << C << ' ' << D << io::endl;
// io::cout << f[A][D] << io::endl;
}
}
}
}
std::cout << Ans * 4 << io::endl;
}
100分
40分复杂度的瓶颈在于计算以AD为脊柱的尾巴的个数,由于我们发现合法的尾巴只可能在垂直AD的直线的右侧,所以考虑先枚举D,按极角排序,再枚举A,让A围着D逆时针转,同时维护合法平面内的尾巴数量,维护的方式与莫队的方法类似。
然后同样枚举AD,为了为了快速求出合法的BC的数量,需要事先处理出任意两点中垂线的解析式,那么鱼的脊柱肯定在BC的中垂线上,所以枚举AD时,通过对AD这条直线所包含的点二分查找就可以知道有多少对BC,再乘以尾巴的数量即可,这里的实现比较复杂,用map映射直线所代表的vector,vector存BC的中点,具体难以描述, 细节就是特判没有斜率的情况。
#include <vector>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define uint unsigned int
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO
")
#define rep(i, a, b) for (register uint i = a, i##end = b; i <= i##end; ++ i)
#define dep(i, a, b) for (register uint i = a, i##end = b; i >= i##end; -- i)
#define int LL
namespace io {
const char endl = '
';
template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
struct Stream {
template<class T> Stream operator>> (T &x) {
x = 0; register int f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x *= f, *this;
}
Stream operator>> (char *str) { return scanf("%s", str), *this; }
template<class T> Stream operator<< (T x) {
static char out[35]; static uint top = 0;
if (x < 0) x = -x, out[++top] = '-';
while (out[++top] = x % 10 ^ 48, x /= 10, x);
while (putchar(out[top--]), top);
return *this;
}
Stream operator<< (char *str) { return printf("%s", str), *this; }
Stream operator<< (char ch) { return putchar(ch), *this; }
} cin, cout;
}
const long double PI = acos(-1), eps = 1e-10;
const int N = 1e3 + 10;
struct vector {
int x, y, id;
long double atan;
vector(int x = 0, int y = 0) : x(x), y(y) {}
vector operator-(const vector B) { return vector(x - B.x, y - B.y); }
LL operator*(const vector B) { return 1ll * x * B.x + 1ll * y * B.y; }
LL len2() { return 1ll * x * x + 1ll * y * y; }
} p[N], vec[N * 2];
struct frac {
LL u, d;
void simp() { LL gcd = std::__gcd(u, d); if (gcd) u /= gcd, d /= gcd; if (d < 0) d = -d, u = -u; }
bool operator< (const frac& B) const { return u < B.u || (u == B.u and d < B.d); }
bool operator== (const frac& B) const { return (u == B.u and d == B.d); }
};
struct line {
frac k, b;
bool operator<(const line& B) const { if(k == B.k) return b < B.b; else return k < B.k; }
} ;
bool cmp(const vector &a, const vector &b) {
return a.atan < b.atan;
}
const uint INF = 0x3f3f3f3f;
int n, cnt, sum;
LL f[N][N];
std::map<line, int> Map;
std::map<LL, int> Cnt;
std::vector<int> buc[N * N];
void add(int x) {
sum += Cnt[vec[x].len2()]++;
}
void del(int x) {
sum -= --Cnt[vec[x].len2()];
}
signed main() {
#ifndef ONLINE_JUDGE
freopen("fish100.in", "r", stdin);
freopen("fish100.out", "w", stdout);
#endif
io::cin >> n;
rep(i, 1, n) io::cin >> p[i].x >> p[i].y;
rep(i, 1, n) {
rep(j, i + 1, n) {
if (p[i].y == p[j].y) {
if ((p[i].x + p[j].x) & 1) continue;
line L;
L.k = (frac) { INF, 0 }, L.b = (frac) { (p[i].x + p[j].x) / 2, 1 };
if (Map.find(L) == Map.end()) Map[L] = ++cnt;
buc[Map[L]].push_back(p[i].y * 2);
} else {
line L;
L.k = (frac) { p[i].x - p[j].x, p[j].y - p[i].y }; L.k.simp();
L.b = (frac) { 1ll * (p[i].y + p[j].y) * (p[i].y - p[j].y) + 1ll * (p[i].x + p[j].x) * (p[i].x - p[j].x), 2ll * (p[i].y - p[j].y) }; L.b.simp();
if (Map.find(L) == Map.end()) Map[L] = ++cnt;
buc[Map[L]].push_back(p[i].x == p[j].x ? p[i].x * 2 : p[i].y + p[j].y);
}
}
}
rep(i, 1, cnt) sort(buc[i].begin(), buc[i].end());
rep(i, 1, n) {
int tot = 0;
rep(j, 1, n) {
if (i != j) {
vec[++tot] = p[j] - p[i];
vec[tot].atan = atan2(vec[tot].y, vec[tot].x);
vec[tot].id = j;
}
}
std::sort(vec + 1, vec + 1 + tot, cmp);
rep(i, 1, tot) vec[i + tot] = vec[i], vec[i + tot].atan += PI * 2;
Cnt.clear();
sum = 0;
for (int j = 1, begin = 0, end = 0; j <= tot; ++ j) { // (, ]
while (begin <= tot * 2 and vec[begin + 1].atan < vec[j].atan + 0.5 * PI + eps) begin++, del(begin);
while (end <= tot * 2 and vec[end + 1].atan + eps < vec[j].atan + 1.5 * PI) end++, add(end);
f[vec[j].id][i] = sum;
}
}
LL ans = 0;
rep(i, 1, n) {
rep(j, i + 1, n) {
int a, b;
if (p[i].y == p[j].y) a = std::min(p[i].x, p[j].x), b = std::max(p[j].x, p[i].x);
else a = std::min(p[i].y, p[j].y), b = std::max(p[i].y, p[j].y);
line L;
if (p[i].x == p[j].x) {
L.k = (frac) { INF, 0 };
L.b = (frac) { p[i].x, 1 };
} else {
L.k = (frac) { p[i].y - p[j].y, p[i].x - p[j].x }; L.k.simp();
L.b = (frac) { 1ll * p[i].y * (p[i].x - p[j].x) + p[i].x * (p[j].y - p[i].y), p[i].x - p[j].x }; L.b.simp();
}
if (Map.find(L) == Map.end()) continue;
int c = Map[L];
ans += 1ll * (std::upper_bound(buc[c].begin(), buc[c].end(), b * 2 - 1) -
std::upper_bound(buc[c].begin(), buc[c].end(), a * 2)) * (f[i][j] + f[j][i]);
}
}
io::cout << ans * 4 << io::endl;
return 0;
}