zoukankan      html  css  js  c++  java
  • HNOI2019fish

    ({ m fish})

    20分:

    六个for,点积判锐角钝角。

    #include <vector>
    #include <queue>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    #define LL long long
    #define uint unsigned int
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define GO debug("GO
    ")
    #define rep(i, a, b) for (register uint (i) = (a); (i) <= (b); ++ (i))
    #define dep(i, a, b) for (register uint (i) = (a); (i) >= (b); -- (i))
    
    namespace io {
        const char endl = '
    ';
        template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
        template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
        struct Stream {
            template<class T> Stream operator>> (T &x) { 
                register int f = 1; register char c;
                while (!isdigit(c = getchar())) if (c == '-') f = -1;
                while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
                return x *= f, *this;
            }
            Stream operator>> (char *str) { return scanf("%s", str), *this; }
            template<class T> Stream operator<< (T x) {
                static char out[35]; static uint top = 0; 
                if (x < 0) x = -x, out[++top] = '-';
                while (out[++top] = x % 10 ^ 48, x /= 10, x); 
                while (putchar(out[top--]), top);
                return *this;
            }
            Stream operator<< (char *str) { return printf("%s", str), *this; }
            Stream operator<< (char ch) { return putchar(ch), *this; }
        } cin, cout;
    }
    
    const int N = 20;
    
    struct Vector {
        int x, y;
        Vector() {}
        Vector(int _x, int _y) { x = _x, y = _y; }
        Vector operator-(Vector B) { return Vector(x - B.x, y - B.y); }
        Vector operator+(Vector B) { return Vector(x + B.x, y - B.y); }
        int operator*(Vector B) { return x * B.x + y * B.y; }
        int len2() { return x * x + y * y; }
    } P[N];
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("xhc.in", "r", stdin);
        freopen("xhc.out", "w", stdout);
    #endif
        register int n, ans = 0;
        std::cin >> n;
        rep(i, 1, n) std::cin >> P[i].x >> P[i].y;
        rep(A, 1, n) rep(B, 1, n) rep(C, 1, n) rep(D, 1, n) rep(E, 1, n) rep(F, 1, n) {
            if (A == B || A == C || A == D || A == E || A == F) continue;
            if (B == C || B == D || B == E || D == F) continue;
            if (C == D || C == E || C == F) continue;
            if (D == E || D == F) continue;
            if (E == F) continue;
            if ((P[B] - P[A]) * (P[D] - P[A]) > 0 and 
                    (P[D] - P[A]) * (P[C] - P[A]) > 0 and
                    (P[B] - P[D]) * (P[A] - P[D]) > 0 and 
                    (P[C] - P[D]) * (P[A] - P[D]) > 0 and 
                    (P[A] - P[D]) * (P[E] - P[D]) < 0 and
                    (P[A] - P[D]) * (P[F] - P[D]) < 0 and
                    (P[A] - P[B]).len2() == (P[A] - P[C]).len2() and
                    (P[B] - P[D]).len2 ()== (P[D] - P[C]).len2() and
                    (P[E] - P[D]).len2() == (P[D] - P[F]).len2()) {
                ans ++;
            }
        }
        io::cout << ans << io::endl;
        return 0;
    }
    

    40分:

    对着题面中的图讲,

    第一部分:

    枚举 (A, D) 然后再枚举 P (形如E,F的点)将所有 PD 满足 角ADP 为钝角的 PD 的长扔进一个 vector

    然后 sort,用 f[A][D] 表示 AD 为脊柱,的尾巴数量,由于 sort 了,很好计算出来。

    再用 map 实现一个 AD斜率->vector 的映射,vector存斜率为这个的(A, D)。

    第二部分:

    枚举 (B, C) ,求出 AD斜率 (垂直) ,到 对应的斜率的vector (map映射)中寻找符合题意的 (A, D) ,然后 Ans 加上 f[A][D].

    根据题意,最后 Ans *= 4.

    #include <vector>
    #include <map>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    #define LL long long
    #define uint unsigned int
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define GO debug("GO
    ")
    #define rep(i, a, b) for (register uint i = a, i##end = b; i <= i##end; ++ i)
    #define dep(i, a, b) for (register uint i = a, i##end = b; i >= i##end; -- i)
    
    namespace io {
        const char endl = '
    ';
        template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
        template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
        struct Stream {
            template<class T> Stream operator>> (T &x) { 
                x = 0; register int f = 1; register char c;
                while (!isdigit(c = getchar())) if (c == '-') f = -1;
                while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
                return x *= f, *this;
            }
            Stream operator>> (char *str) { return scanf("%s", str), *this; }
            template<class T> Stream operator<< (T x) {
                static char out[35]; static uint top = 0; 
                if (x < 0) x = -x, out[++top] = '-';
                while (out[++top] = x % 10 ^ 48, x /= 10, x); 
                while (putchar(out[top--]), top);
                return *this;
            }
            Stream operator<< (char *str) { return printf("%s", str), *this; }
            Stream operator<< (char ch) { return putchar(ch), *this; }
        } cin, cout;
    }
    
    const int N = 400 + 10;
    
    struct vector {
        int x, y;
        vector(int x = 0, int y = 0) : x(x), y(y) {}
        vector operator-(const vector B) { return vector(x - B.x, y - B.y); }
        LL operator*(const vector B) { return 1ll * x * B.x + 1ll * y * B.y; }
        LL len2() { return 1ll * x * x + 1ll * y * y; }
    } p[N];
    
    const uint INF = 0x3f3f3f3f;
    int n;
    LL f[N][N];
    std::vector<int> buc;
    std::map<std::pair<int, int>, std::vector<std::pair<int, int> > > Map;
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("fish.in", "r", stdin);
        freopen("fish.out", "w", stdout);
    #endif
        io::cin >> n;
        rep(i, 1, n) io::cin >> p[i].x >> p[i].y;
        rep(A, 1, n) {
            rep(D, 1, n) if (A != D) {
                buc.clear();
                rep(P, 1, n) if (P != A and P != D) {
                    if ((p[P] - p[D]) * (p[A] - p[D]) < 0) {
                        buc.push_back((p[P] - p[D]).len2());
                    }
                }
                std::sort(buc.begin(), buc.end());
                uint i = 0;
                while (i < buc.size()) {
                    uint j = i;
                    while(i < buc.size() - 1 and buc[i] == buc[i + 1]) {
                        i++;
                    }
                    f[A][D] += 1ll * (i - j + 1) * (i - j) / 2;
                    i++;
                }
                int up = p[D].y - p[A].y, down = p[D].x - p[A].x, gcd;
                gcd = std::__gcd(abs(up), abs(down));
                if (gcd) 
                    Map[std::make_pair(up / gcd, down / gcd)].push_back(std::make_pair(A, D));
                else if (up == 0)
                    Map[std::make_pair(0, INF)].push_back(std::make_pair(A, D));
                else 
                    Map[std::make_pair(INF, 0)].push_back(std::make_pair(A, D));
            }
        }
        LL Ans = 0;
        rep(B, 1, n) {
            rep(C, 1, n) {
                int up = p[B].y - p[C].y, down = p[B].x - p[C].x, gcd;
                gcd = std::__gcd(abs(up), abs(down));
                std::pair<int, int> Kad;
                if (gcd) 
                    Kad = std::make_pair(-down / gcd, up / gcd);
                else if (up == 0) 
                    Kad = std::make_pair(INF, 0);
                else 
                    Kad = std::make_pair(0, INF);
                for (auto i : Map[Kad]) {
                    register uint A = i.first, D = i.second;
                    if ((p[B] - p[A]).len2() == (p[C] - p[A]).len2() and 
                            (p[B] - p[D]).len2() == (p[C] - p[D]).len2() and
                            (p[B] - p[A]) * (p[D] - p[A]) > 0 and
                            (p[C] - p[A]) * (p[D] - p[A]) > 0 and
                            (p[B] - p[D]) * (p[A] - p[D]) > 0 and 
                            (p[C] - p[D]) * (p[A] - p[D]) > 0) {
                        Ans += f[A][D];
    //                    io::cout << A << ' ' << B << ' ' << C << ' ' << D << io::endl;
    //                    io::cout << f[A][D] << io::endl;
                    }
                }
            }
        }
        std::cout << Ans * 4 << io::endl;
    }
    

    100分

    40分复杂度的瓶颈在于计算以AD为脊柱的尾巴的个数,由于我们发现合法的尾巴只可能在垂直AD的直线的右侧,所以考虑先枚举D,按极角排序,再枚举A,让A围着D逆时针转,同时维护合法平面内的尾巴数量,维护的方式与莫队的方法类似。

    然后同样枚举AD,为了为了快速求出合法的BC的数量,需要事先处理出任意两点中垂线的解析式,那么鱼的脊柱肯定在BC的中垂线上,所以枚举AD时,通过对AD这条直线所包含的点二分查找就可以知道有多少对BC,再乘以尾巴的数量即可,这里的实现比较复杂,用map映射直线所代表的vector,vector存BC的中点,具体难以描述, 细节就是特判没有斜率的情况。

    #include <vector>
    #include <map>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    #define LL long long
    #define uint unsigned int
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define GO debug("GO
    ")
    #define rep(i, a, b) for (register uint i = a, i##end = b; i <= i##end; ++ i)
    #define dep(i, a, b) for (register uint i = a, i##end = b; i >= i##end; -- i)
    #define int LL
    
    namespace io {
        const char endl = '
    ';
        template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
        template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
        struct Stream {
            template<class T> Stream operator>> (T &x) { 
                x = 0; register int f = 1; register char c;
                while (!isdigit(c = getchar())) if (c == '-') f = -1;
                while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
                return x *= f, *this;
            }
            Stream operator>> (char *str) { return scanf("%s", str), *this; }
            template<class T> Stream operator<< (T x) {
                static char out[35]; static uint top = 0; 
                if (x < 0) x = -x, out[++top] = '-';
                while (out[++top] = x % 10 ^ 48, x /= 10, x); 
                while (putchar(out[top--]), top);
                return *this;
            }
            Stream operator<< (char *str) { return printf("%s", str), *this; }
            Stream operator<< (char ch) { return putchar(ch), *this; }
        } cin, cout;
    }
    
    const long double PI = acos(-1), eps = 1e-10;
    const int N = 1e3 + 10;
    
    struct vector {
        int x, y, id;
        long double atan;
        vector(int x = 0, int y = 0) : x(x), y(y) {}
        vector operator-(const vector B) { return vector(x - B.x, y - B.y); }
        LL operator*(const vector B) { return 1ll * x * B.x + 1ll * y * B.y; }
        LL len2() { return 1ll * x * x + 1ll * y * y; }
    } p[N], vec[N * 2];
    
    struct frac {
        LL u, d;
        void simp() { LL gcd = std::__gcd(u, d); if (gcd) u /= gcd, d /= gcd; if (d < 0) d = -d, u = -u; }
        bool operator< (const frac& B) const { return u < B.u || (u == B.u and d < B.d); }
        bool operator== (const frac& B) const { return (u == B.u and d == B.d); }
    };
    
    struct line {
        frac k, b;
        bool operator<(const line& B) const { if(k == B.k) return b < B.b; else return k < B.k; }
    } ;
    
    bool cmp(const vector &a, const vector &b) { 
        return a.atan < b.atan;
    }
    
    const uint INF = 0x3f3f3f3f;
    
    int n, cnt, sum;
    LL f[N][N];
    std::map<line, int> Map;
    std::map<LL, int> Cnt;
    std::vector<int> buc[N * N];
    
    void add(int x) {
        sum += Cnt[vec[x].len2()]++;
    }
    void del(int x) {
        sum -= --Cnt[vec[x].len2()];
    }
    
    signed main() {
    #ifndef ONLINE_JUDGE
        freopen("fish100.in", "r", stdin);
        freopen("fish100.out", "w", stdout);
    #endif
        io::cin >> n;
        rep(i, 1, n) io::cin >> p[i].x >> p[i].y;
        rep(i, 1, n) {
            rep(j, i + 1, n) {
                if (p[i].y == p[j].y) {
                    if ((p[i].x + p[j].x) & 1) continue;
                    line L;
                    L.k = (frac) { INF, 0 }, L.b = (frac) { (p[i].x + p[j].x) / 2, 1 };
                    if (Map.find(L) == Map.end()) Map[L] = ++cnt;
                    buc[Map[L]].push_back(p[i].y * 2);
                } else {
                    line L;
                    L.k = (frac) { p[i].x - p[j].x, p[j].y - p[i].y }; L.k.simp();
                    L.b = (frac) { 1ll * (p[i].y + p[j].y) * (p[i].y - p[j].y) + 1ll * (p[i].x + p[j].x) * (p[i].x - p[j].x), 2ll * (p[i].y - p[j].y) }; L.b.simp();
                    if (Map.find(L) == Map.end()) Map[L] = ++cnt;
                    buc[Map[L]].push_back(p[i].x == p[j].x ? p[i].x * 2 : p[i].y + p[j].y);
                }
            }
        }
        rep(i, 1, cnt) sort(buc[i].begin(), buc[i].end());
        rep(i, 1, n) {
            int tot = 0;
            rep(j, 1, n) {
                if (i != j) {
                    vec[++tot] = p[j] - p[i];
                    vec[tot].atan = atan2(vec[tot].y, vec[tot].x);
                    vec[tot].id = j;
                }
            }
            std::sort(vec + 1, vec + 1 + tot, cmp);
            rep(i, 1, tot) vec[i + tot] = vec[i], vec[i + tot].atan += PI * 2;
            Cnt.clear();
            sum = 0;
            for (int j = 1, begin = 0, end = 0; j <= tot; ++ j) { // (, ]
                while (begin <= tot * 2 and vec[begin + 1].atan < vec[j].atan + 0.5 * PI + eps) begin++, del(begin);
                while (end <= tot * 2 and vec[end + 1].atan + eps < vec[j].atan + 1.5 * PI) end++, add(end);
                f[vec[j].id][i] = sum;
            }
        }
        LL ans = 0;
        rep(i, 1, n) {
            rep(j, i + 1, n) {
                int a, b;
                if (p[i].y == p[j].y) a = std::min(p[i].x, p[j].x), b = std::max(p[j].x, p[i].x);
                else a = std::min(p[i].y, p[j].y), b = std::max(p[i].y, p[j].y);
                line L;
                if (p[i].x == p[j].x) {
                    L.k = (frac) { INF, 0 };
                    L.b = (frac) { p[i].x, 1 };
                } else {
                    L.k = (frac) { p[i].y - p[j].y, p[i].x - p[j].x }; L.k.simp();
                    L.b = (frac) { 1ll * p[i].y * (p[i].x - p[j].x) + p[i].x * (p[j].y - p[i].y), p[i].x - p[j].x }; L.b.simp();
                }
                if (Map.find(L) == Map.end()) continue;
                int c = Map[L];
                ans += 1ll * (std::upper_bound(buc[c].begin(), buc[c].end(), b * 2 - 1) - 
                        std::upper_bound(buc[c].begin(), buc[c].end(), a * 2)) * (f[i][j] + f[j][i]);
            }
        }
        io::cout << ans * 4 << io::endl;
        return 0;
    }
    
  • 相关阅读:
    对拍程序的写法
    单调队列模板
    [bzoj1455]罗马游戏
    KMP模板
    [bzoj3071]N皇后
    [bzoj1854][SCOI2010]游戏
    Manacher算法详解
    [bzoj2084][POI2010]Antisymmetry
    Python_sklearn机器学习库学习笔记(一)_一元回归
    C++STL学习笔记_(1)string知识
  • 原文地址:https://www.cnblogs.com/cnyali-Tea/p/10846414.html
Copyright © 2011-2022 走看看