zoukankan      html  css  js  c++  java
  • [LOJ3123] CTSC2019重复

    Description

    给定一个⻓为 n 的字符串 s , 问有多少个⻓为 m 的字符串 t 满足:
    将 t 无限重复后,可以从中截出一个⻓度为 n 且字典序比 s 小的串。

    m ≤ 2000 n ≤ 2000

    Solution

    正难则反,补集转换,用 (26^m) 减去“无法从中截出字典序比 s 小的串”的方案数。

    方便表述,称字符串t具有特征 (A) 当且仅当无法从无限重复的t中截出一段长度为m且字典序比s小的字段即A为任意无限重复的t中长度为m的字典序都比s大

    考虑构造一个有限状态自动机能接受所有满足特征A的串,然后在上面计数,那么我们要统计对于每个节点开头走m条边后回到它自己的方案数(t串是无限长的)。

    由于需要满足特征A,所以一个点的出边只有最大的边是有用的,因为满足A的字符串一定不会走更小的边,(要么比s大,要么目前和s一样,比s大对应的是已经接受了一个满足A的串,直接跳到根,和s一样说明要继续走下去)。

    于是这就是一个只保留最大转移边的kmp自动机。

    并且一个节点只有一条出边,还有许多边指向根,后者之间本质是一样的我们只要记个数即可(代码实现中是edge[i],表示i点指向根的边数)。

    现在考虑如何在上面dp,不难发现这个图很特殊是一个rho,图上的路径只有两种:

    • 在环上走m步回到自己,只有当环的大小为m的约数时存在。
    • 从自己走若步(比如j步)到根,再从根走m-j步回到自己。

    前者直接找环算,后者设 (f[i][u]) 表示从根走i步到u的方案数, (g[i][u]) 为从u走i步到根的方案数,dp出来后枚举j即可。

    [f[i + 1][v] leftarrow f[i][u] \ f[i + 1][0] leftarrow f[i][u] imes edge[u]\ g[i + 1][u] leftarrow g[i][v] ]

    Code

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <fstream>
    
    typedef long long LL;
    typedef unsigned long long uLL;
    
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define MP(x, y) std::make_pair(x, y)
    #define DE(x) cerr << x << endl;
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define GO cerr << "GO" << endl;
    
    using namespace std;
    
    inline void proc_status()
    {
    	ifstream t("/proc/self/status");
    	cerr << string(istreambuf_iterator<char>(t), istreambuf_iterator<char>()) << endl;
    }
    inline int read() 
    {
    	register int x = 0; register int f = 1; register char c;
    	while (!isdigit(c = getchar())) if (c == '-') f = -1;
    	while (x = (x << 1) + (x << 3) + (c xor 48), isdigit(c = getchar()));
    	return x * f;
    }
    template<class T> inline void write(T x) 
    {
    	static char stk[30]; static int top = 0;
    	if (x < 0) { x = -x, putchar('-'); }
    	while (stk[++top] = x % 10 xor 48, x /= 10, x);
    	while (putchar(stk[top--]), top);
    }
    template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
    template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
    
    const int maxN = 2e3;
    const int mod = 998244353;
    
    namespace math
    {
    	void pls(int &x, int y)
    	{
    		x += y;
    		if (x >= mod) x -= mod;
    		if (x < 0) x += mod;
    	}
    	LL qpow(LL a, LL b)
    	{
    		LL ans(1);
    		while (b)
    		{
    			if (b & 1) 
    				ans = ans * a % mod;
    			a = a * a % mod;
    			b >>= 1;
    		}
    		return ans;
    	}
    }
    using math::pls;
    using math::qpow;
    
    int n, m; //n字符串长度,m走m步
    char str[maxN + 2];
    int fail[maxN + 2], ver[maxN + 2], edge[maxN + 2];
    
    void insert()
    {
    	fail[1] = 0;
    	for (int i = 2, j = 0; i <= n; ++i)
    	{
    		while (j and str[j + 1] != str[i]) j = fail[j];
    		j += str[j + 1] == str[i];
    		fail[i] = j;
    	}
    }
    
    void build()
    {
    	for (int i = 0; i <= n; ++i)
    	{
    		for (int j = 25; j >= 0; --j)
    		{
    			int p = i;
    			if (p == n) p = fail[p];
    			while (p and str[p + 1] != j + 'a') p = fail[p];
    			p += (str[p + 1] == (j + 'a'));
    			if (p) 
    			{
    				ver[i] = p;
    				edge[i] = 25 - j;
    				break;
    			}
    		}
    	}
    }
    
    int size;
    int f[maxN + 2][maxN + 2], g[maxN + 2][maxN + 2]; // f[i][u] : root -> u cost i ; g[i][u] : u -> root cost i
    
    void DP()
    {
    	f[0][0] = 1;
    	for (int i = 0; i < m; ++i)
    		for (int j = 0; j <= n; ++j)
    		{
    			pls(f[i + 1][ver[j]], f[i][j]);
    			pls(f[i + 1][0], 1ll * f[i][j] * edge[j] % mod);
    		}
    	for (int i = 0; i <= n; ++i)
    		g[1][i] = edge[i];
    	for (int i = 2; i <= m; ++i)
    		for (int j = 0; j <= n; ++j)
    			g[i][j] = g[i - 1][ver[j]];
    }
    
    int key;
    bool vis[maxN + 2];
    
    bool dfs(int u)
    {
    	if (!u) return 0;
    	if (vis[u]) { key = u; return 1; }
    	vis[u] = 1;
    	if (dfs(ver[u])) { size++; return key != u; }
    	return 0;
    }
    
    int main() 
    {
    #ifndef ONLINE_JUDGE
    	freopen("xhc.in", "r", stdin);
    	freopen("xhc.out", "w", stdout);
    #endif
    	scanf("%d %s", &m, str + 1);
    	n = strlen(str + 1);
    
    	insert();
    	build();
    	DP();
    	int ans = 0;
    	dfs(1);
    	if (m % size == 0) 
    		ans = size;
    	for (int i = 0; i <= n; ++i)
    	{
    		int sum = 0;
    		for (int j = 0; j <= m; ++j)
    			pls(sum, 1ll * f[j][i] * g[m - j][i] % mod);
    		pls(ans, sum);
    	}
    	cout << ((qpow(26, m) - ans) % mod + mod) % mod << endl;
    	return 0;
    }
    
  • 相关阅读:
    Java 数据库操作oracle增删改查,通用封装基于hashmap
    Python 自动化paramiko操作linux使用shell命令,以及文件上传下载linux与windows之间的实现
    Java利用 ganymedssh2build.jar来上传文件到linux以及下载linux文件以及执行linux shell命令
    Java Calendar and SimpleDateFormat 时间模块
    Java 读取properties
    Java java httpclient4.5 进行http,https通过SSL安全验证跳过,封装接口请求 get,post(formdata,json)封装,文件上传下载
    Python 基于request库的get,post,delete,封装
    更法第一 (zz)
    北京将投资707亿元建三条地铁新线 (zz.IS2120@BG57IV3)
    fgetws 讀取Unicode文件 (zz.IS2120@BG57IV3)
  • 原文地址:https://www.cnblogs.com/cnyali-Tea/p/11420659.html
Copyright © 2011-2022 走看看