zoukankan      html  css  js  c++  java
  • Codeforces Round #346 (Div. 2)

    开黑被Skip...白打了一场= =,rating没升也没降。。。(论开黑的正确姿势)

    A题:

    题目描述:

    求一个人在一个节点数为n的环上,从a位置走b步会到哪个位置。

    题解:

    水题,直接模就好了。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    #define For(_i, _a, _b) for (R int (_i) = (_a); (_i) <= (_b); ++(_i))
    #define Rep(_i, _a, _b) for (R int (_i) = (_b); (_i) >= (_a); ++(_i))
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    
    int main()
    {
    //	setfile();
    	R int n = FastIn(), a = FastIn(), b = FastIn();
    	R int ans = a + b;
    	while (ans < 0) ans += n;
    	while (ans > n) ans -= n;
    	printf("%d
    ",ans == 0 ? n : ans );
    	return 0;
    }
    


    B题:

    题目描述:

    给定n个人和m个队伍,每个人有一个名字,所属队伍和能力值。求每个队伍能力值前两名的名字。如果前两名不只两个人则输出“?”

    题解:

    按队伍为第一关键字,能力值为第二关键字排序。然后搞一搞就好了。当时考场上想复杂了,分类讨论了半天,推掉了重写了好几遍。悲催!

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    #define maxn 100010
    struct people
    {
    	char name[50];
    	int pos, v;
    	inline bool operator < (const people &that)const{return pos < that.pos || (pos == that.pos && v > that.v);}
    }p[maxn], f[maxn], s[maxn];
    bool err[maxn];
    int main()
    {
    //	setfile();
    	R int n, m;
    	scanf("%d %d
    ", &n, &m);
    	for (R int i = 1; i <= n; ++i)
    	{
    		scanf("%s %d %d
    ", p[i].name, &p[i].pos, &p[i].v);
    	}
    	std::sort(p + 1, p + n + 1);
    	for (R int i = 1; i <= n; ++i)
    	{
    		if (err[p[i].pos]) continue;
    		err[p[i].pos] = 1;
    		if (p[i].pos == p[i + 2].pos && (p[i].v == p[i + 2].v || p[i + 1].v == p[i + 2].v))
    			puts("?");
    		else
    		{
    			printf("%s %s
    ",p[i].name, p[i + 1].name );
    		}
    	}
    	return 0;
    }
    



    C题:

    题目描述:

    假装你已经有了n个玩具和m块钱。每一个玩具代表了一个数字,求你用m块钱最多能买多少你没有的玩具,输出方案。


    题解:

    贪心。从最小的开始买。买到不能买为止。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    #define For(_i, _a, _b) for (R int (_i) = (_a); (_i) <= (_b); ++(_i))
    #define Rep(_i, _a, _b) for (R int (_i) = (_b); (_i) >= (_a); ++(_i))
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    #define maxn 100010
    int a[maxn], ans[maxn];
    int main()
    {
    //	setfile();
    	R int n = FastIn(), m = FastIn(), maxx = 0, pos = 1, tot = 0;
    	for (R int i = 1; i <= n; ++i)
    		a[i] = FastIn(), cmax(maxx, a[i]);
    	std::sort(a + 1, a + n + 1);
    	for (R int i = 1; m > 0; ++i)
    	{
    //		printf("%d %d
    ",i, m );
    		if (pos <= n && a[pos] == i) {pos ++;continue;}
    		m -= i;
    		ans[++tot] = i;
    	}
    	printf("%d
    ",m == 0? tot : tot -1 );
    	for (R int i = 1; i <= tot-1 ; ++i)
    		printf("%d ",ans[i] );
    	m == 0 ?printf("%d",ans[tot] ) : 0;
    	return 0;
    }
    


    D题:

    题目描述:

    在二维平面上给你n+1个点,然后这些点形成了一个回路,保证每条边与坐标轴平行。求有多少个线段所在直线穿过原封闭图形。


    题解:

    考场上又是写凸包又是写复杂的分类讨论的,结果比赛结束了才知道是找规律,并且结论是可以证明的。。。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    #else
    	#define debug(...)
    #endif
    
    #define R register
    #define getc() (S==T&&(T=(S=B)+fread(B,1,1<<15,stdin),S==T)?EOF:*S++)
    #define gmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define gmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1<<15],*S=B,*T=B;
    inline int FastIn()
    {
    	R char ch;R int cnt=0;R bool minus=0;
    	while (ch=getc(),(ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ?minus=1:cnt=ch-'0';
    	while (ch=getc(),ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus?-cnt:cnt;
    }
    int n;
    int main()
    {
    	n=FastIn();
    	printf("%d
    ",(n >> 1) - 2 );
    	return 0;
    }


    E题:

    题目描述:

    给定n个点和m条无向边,求不包含链的联通块的个数。

    题解:

    dfs。没啦!

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    #define maxn 100010
    int last[maxn], ecnt, next[maxn << 1], to[maxn << 1], fa[maxn], ans;
    bool vis[maxn], find;
    #define add(_a, _b) (to[++ecnt] = (_b), next[ecnt] = last[_a], last[_a] = ecnt)
    void dfs(R int x)
    {
    	vis[x] = 1;
    	for (R int i = last[x]; i; i = next[i])
    	{
    		if (vis[to[i]] && fa[x] != to[i] && !find) {ans--;find = 1 ;break;}
    		else if (!vis[to[i]])
    		{
    			fa[to[i]] = x;
    			dfs(to[i]);
    		}
    	}
    }
    int main()
    {
    //	setfile();
    	R int n = FastIn(), m = FastIn();
    	for (R int i = 1; i <= m; ++i)
    	{
    		R int a = FastIn(), b = FastIn();
    		add(a, b);add(b, a);
    	}
    	for (R int i = 1; i <= n; ++i)
    		if (!vis[i]) find = 0, dfs(i), ans++;
    	printf("%d
    ",ans);
    	return 0;
    }
    


    F题:

    题目描述:

    给你一个N*M的矩阵,以及一个数K,你可以把矩阵里的数减少,使得剩下一个权值全部为某个数的四联通块(其他数都为0),且矩阵内所有数的和必须为K,且这个联通块里必须有一个数没有修改,修改只支持减法。

    题解:

    这题的限制条件有点多。做法就是先把权值排序,然后一个一个判断,用并查集维护已经出现过的数的联通块,如果某个数能被K整除且所在的已经出现的联通块的大小大于K/V,则输出答案。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    inline long long FastIn2()
    {
    	R char ch; R long long cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    #define maxn 2000010
    struct poi
    {
    	int x, y, v;
    	inline bool operator < (const poi &that) const {return v > that.v;}
    }buff[maxn];
    bool vis[maxn];
    int Fa[maxn], size[maxn], ans[1010][1010];
    #define pos(_i , _j) (((_i) - 1) * m + (_j))
    int Find(R int x) {return Fa[x] == x ? x : Fa[x] = Find(Fa[x]);}
    const int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
    std::queue<int> q;
    int main()
    {
    //	setfile();
    	R int n = FastIn(), m = FastIn();R long long k = FastIn2(), cnt = 0;
    	for (R int i = 1; i <= n; ++i)
    		for (R int j = 1; j <= m; ++j)
    		{
    			buff[++cnt] = (poi){i, j, FastIn()};
    		}
    	std::sort(buff + 1, buff + cnt + 1);
    	for (R int i = 1; i <= cnt; ++i)
    	{
    		Fa[i] = i;
    		size[i] = 1;
    	}
    	for (R int i = 1; i <= cnt; ++i)
    	{
    		R int xx = buff[i].x, yy = buff[i].y, vv = buff[i].v;
    		vis[pos(xx, yy)] = 1;
    		R int f, f0 = Find(pos(xx, yy));
    		for (R int j = 0; j < 4; ++j)
    		{
    			R int nx = xx + dx[j], ny = yy + dy[j];
    			if (nx > 0 && nx <= n && ny > 0 && ny <= m && vis[pos(xx + dx[j], yy + dy[j])])
    			{
    				f = Find(pos(nx, ny));
    				if (f != f0)
    				{
    					Fa[f] = f0;
    					size[f0] += size[f];
    				}
    			}
    		}
    		if (k % vv != 0) continue;
    		if (size[f0] < k / vv) continue;
    		puts("YES");
    		q.push(pos(xx, yy));
    		R int cnt = k / vv - 1, tmp = cnt;
    		ans[xx][yy] = vv;
    		vis[pos(xx, yy)] = 0;
    		while (!q.empty() && cnt > 0)
    		{
    			R int now = q.front(); q.pop();
    			R int nx, ny = now % m;
    			!ny ? ny = m : 0;
    			nx = (now - ny) / m + 1;
    			for (R int j = 0; j < 4 && cnt > 0; ++j)
    			{
    				R int nex = nx + dx[j], ney = ny + dy[j];
    				if (nex > 0 && nex <= n && ney > 0 && ney <= m && Find(pos(nex, ney)) == f0 && vis[pos(nex, ney)])
    					ans[nex][ney] = vv, q.push(pos(nex, ney)), cnt--, vis[pos(nex, ney)] = 0;
    			}
    		}
    		for (R int ii = 1; ii <= n; ++ii)
    		{
    			for (R int jj = 1; jj <= m; ++jj) printf("%d ",ans[ii][jj] );
    			puts("");
    		}
    		return 0;
    	}
    	puts("NO");
    	return 0;
    }
    /*
    4 3 8
    2 2 2
    1 1 1
    1 2 1
    1 1 1
    */


    G题:

    题目描述:
    你有n个高度为hi的方块,然后你可以从上面开始取走一个联通块,求取的方案数。

    题解:

    DP。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
    	#define LL "%I64d"
    #else
    	#define LL "%lld"
    #endif
    
    #ifdef CT
    	#define debug(...) printf(__VA_ARGS__)
    	#define setfile() 
    #else
    	#define debug(...)
    	#define filename ""
    	#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
    	R char ch; R int cnt = 0; R bool minus = 0;
    	while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
    	ch == '-' ? minus = 1 : cnt = ch - '0';
    	while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
    	return minus ? -cnt : cnt;
    }
    #define maxn 1000010
    const int mod = 1e9 + 7;
    int h[maxn], f[maxn];
    int main()
    {
    //	setfile();
    	R int n = FastIn();
    	R long long ans = 0;
    	for (R int i = 1; i <= n; ++i) h[i] = FastIn() - 1;
    	for (R int i = 1; i <= n; ++i)
    	{
    		ans += h[i];
    		R int a = dmin(h[i - 1], h[i]);
    		R int b = dmin(a, h[i + 1]);
    		R int c = dmin(h[i], h[i + 1]);
    		ans = (1ll * f[i - 1] * a + ans) % mod;
    		f[i] = (1ll * f[i - 1] * b + c) % mod;
    	}
    	printf("%lld
    ",ans );
    	return 0;
    }
    




  • 相关阅读:
    【JBPM4】创建流程实例
    【JBPM4】流程部署
    Table上下滚动
    oracle 导入dmp文件
    Win7下安装Oracle 10g
    【Hibernate3.3复习知识点二】
    通过IP地址和子网掩码计算主机数
    vue.js知识总结
    vue生产环境部署总结
    移动端上遇到的各种坑与相对解决方案
  • 原文地址:https://www.cnblogs.com/cocottt/p/6765014.html
Copyright © 2011-2022 走看看