zoukankan      html  css  js  c++  java
  • Binary Search Tree 以及一道 LeetCode 题目

    一道LeetCode题目

    今天刷一道LeetCode的题目,要求是这样的:

    Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

    由于对于 Binary search tree 不理解,所以绕了点弯路,要解这道题,必须理解什么是 binary search tree。我们来看一下定义:

    A binary search tree is a rooted binary tree, whose internal nodes each store a key (and optionally, an associated value) and each have two distinguished sub-trees, commonly denoted left and right. The tree additionally satisfies the binary search property, which states that the key in each node must be greater than or equal to any key stored in the left sub-tree, and less than or equal to any key stored in the right sub-tree.[1]:287 (The leaves (final nodes) of the tree contain no key and have no structure to distinguish them from one another.

    看一下下面这个图一下子就能理解,就是说每个节点左边的值一定小于右边。

    了解到这个约束,这个题目解起来就比较简单了:

    class Solution:
        def trimBST(self, root, L, R):
            """
            :type root: TreeNode
            :type L: int
            :type R: int
            :rtype: TreeNode
            """
            if(root.val < L):
                if(root.right != None):
                    root = self.trimBST(root.right, L, R)
                else:
                    return None
            elif(root.val > R):
                if(root.left != None):
                    root = self.trimBST(root.left, L, R)
                else:
                    return None
            else:
                if(root.left != None):
                    root.left = self.trimBST(root.left, L, R)
                else:
                    root.left = None
                    
                if(root.right != None):   
                    root.right = self.trimBST(root.right, L, R)
                else:
                    root.right = None
                    
            return root
    

    BST数据结构的一些算法特性

    Algorithm Average Worst case
    Space O(n) O(n)
    Search O(log n) O(n)
    Insert O(log n) O(n)
    Delete O(log n) O(n)

    参考资料:
    1、Leetcode
    2、Wiki Binary search tree

  • 相关阅读:
    configure错误列表供参考
    php和AJAX用户注册演示程序
    php中文汉字截取函数
    阻止a标签点击跳转刷新
    js日期插件
    apache 开启Gzip网页压缩
    查询文章的上下篇Sql语句
    thinkphp简洁、美观、靠谱的分页类
    thinkphp自定义模板标签(二)
    thinkphp自定义模板标签(一)
  • 原文地址:https://www.cnblogs.com/cocowool/p/8527225.html
Copyright © 2011-2022 走看看