题面
题意:
找到一个区间([l,r])使得(min(a_{l...r}) cdot sum(b_{l...r}))最大。
思路
先用单调栈预处理出(a_i)作为最小值的区间,然后对于每一个(a_i),如果是(a_i<0),就要查询(b)在([l,r])内并且包含(i)的最小连续子段和,反之查询最大子段和。我们对(b)数组的前缀数组建一棵线段树,如果要查最小子段和,就是(min(pre_{i...r})-max(pre_{l...i-1}))反之即为(max(pre_{i...r})-min(pre_{l...i-1}))。时间复杂度(O(nlog(n)))
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 3e6+100;
long long maxx[N*5],minn[N*5];
long long a[N],b[N],sum[N],pre[N];
void pushup(int rt){
maxx[rt]=max(maxx[rt<<1],maxx[rt<<1|1]);
minn[rt]=min(minn[rt<<1],minn[rt<<1|1]);
}
void bt(int rt,int l,int r){
if(l==r){
maxx[rt]=minn[rt]=pre[l];
return ;
}
int mid=(l+r)>>1;
bt(rt<<1,l,mid);
bt(rt<<1|1,mid+1,r);
pushup(rt);
}
long long querymaxx(int rt,int l,int r,int nl,int nr){
if(nl<=l&&r<=nr){
return maxx[rt];
}
long long ans=0;
int mid=(l+r)>>1;
if(nl<=mid) ans=max(ans,querymaxx(rt<<1,l,mid,nl,nr));
if(nr>mid) ans=max(ans,querymaxx(rt<<1|1,mid+1,r,nl,nr));
return ans;
}
long long queryminn(int rt,int l,int r,int nl,int nr){
if(nl<=l&&r<=nr){
return minn[rt];
}
long long ans=99999999999999;
int mid=(l+r)>>1;
if(nl<=mid) ans=min(ans,queryminn(rt<<1,l,mid,nl,nr));
if(nr>mid) ans=min(ans,queryminn(rt<<1|1,mid+1,r,nl,nr));
return ans;
}
int L[N],R[N];
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
for(int i=1;i<=n;i++) scanf("%lld",&b[i]),pre[i]=pre[i-1]+b[i];
bt(1,1,n);
stack<long long> sta;
for(int i=1;i<=n;i++){
while(sta.size()&&a[sta.top()]>=a[i]) sta.pop();
if(sta.empty()) L[i]=1;
else L[i]=sta.top()+1;
sta.push(i);
}
while(sta.size()) sta.pop();
for(int i=n;i>=1;i--){
while(sta.size()&&a[sta.top()]>=a[i]) sta.pop();
if(sta.empty()) R[i]=n;
else R[i]=sta.top()-1;
sta.push(i);
}
long long ans=-99999999999999999;
for(int i=1;i<=n;i++){
if(a[i]<0){
if(i>L[i]) ans=max(ans,a[i]*(queryminn(1,1,n,i,R[i])-querymaxx(1,1,n,L[i],i-1)));
else ans=max(ans,a[i]*(queryminn(1,1,n,i,R[i])-pre[i-1]));
}
else{
if(i>L[i]) ans=max(ans,a[i]*(querymaxx(1,1,n,i,R[i])-queryminn(1,1,n,L[i],i-1)));
else ans=max(ans,a[i]*(querymaxx(1,1,n,i,R[i])-pre[i-1]));
}
}
printf("%lld
",ans);
return 0;
}