题目描述
众所周知,遍历一棵二叉树就是按某条搜索路径巡访其中每个结点,使得每个结点均被访问一次,而且仅被访问一次。最常使用的有三种遍历的方式:
1.前序遍历:若二叉树为空,则空操作;否则先访问根结点,接着前序遍历左子树,最后再前序遍历右子树。
2.中序遍历:若二叉树为空,则空操作;否则先中序遍历左子树,接着访问根结点,最后再前中遍历右子树。
3.后序遍历:若二叉树为空,则空操作;否则先后序遍历左子树,接着后序遍历右子树,最后再访问根结点。
现在的问题是给定前序遍历和后序遍历的顺序,要求出总共有多少棵不同形态的二叉树满足这样的遍历顺序。
输入
输入有多组数据,每组数据两行,第一行给出前序遍历的访问顺序,第二行给出后序遍历的访问顺序。
二叉树的结点用一个大写字母表示,不会有两个结点标上相同字母。输入数据不包含空格,且保证至少有一棵二叉树符合要求。
输出
输出一个整数,为符合要求的不同形态二叉树的数目。
样例输入
ABCD
CBDA
样例输出
2
设只有一颗子树的节点有count个
设前序边历数组为pre[100],后序遍历数组为pos[100]
设一个循环变量
就给出的样例分析一下
1:前序遍历的第一个元素和后序遍历的最后一个元素一定是根节点A ,
2:前序遍历的第二个元素是A的一个子节点左右节点不知,设a1-b1表示一个树的前序遍历,a2-b2表示后序遍历,可知如果pre[a1+1] = pos[i]且i=b2-1,上一个根节点只有一个子树,此时令计数变量count+1,继续递归处理子树a1+1~b1,a2~b2-1
3:如果i != b2-1,很明显存在左右子树,此时应分别处理此时左子树为的前后序边历分别为:a1+1~a1+1+i-a2,a2~i,右子树为:a1+1+i-a2~b1,i~b2,重复2分别处理左右子树
4:返回条件,很明显当不存在子树时返回,即b1>a1,
5:最后计算2*count即为数的数目
c代码实现
#include <stdio.h> #include <string.h> char PreStr[100]; char PostStr[100]; int count; void calc(int a1,int b1,int a2,int b2) { int i; if(a1>=b1) return; for(i=a2; i<=b2-1; i++) { if(PreStr[a1+1] == PostStr[i]) break; } if(i == b2-1) count++; calc(a1+1,a1+1+(i-a2),a2,i); calc(a1+1+(i-a2)+1,b1,i+1,b2-1); } int Pow(int n) { int i; int m = 1; for(i = 0; i < n; i++) { m *= 2; } return m; } int main() { int Length; while (scanf("%s%s",PreStr,PostStr) == 2){ Length = (int)strlen(PreStr); count = 0; calc(0,Length-1,0,Length-1); printf("%d ", Pow(count)); } return 0; }