zoukankan      html  css  js  c++  java
  • 特征根求解

    秩1方阵公式:若方阵$A=A_{n imes n}, rank(A)=1$,则有如下性质

    (1)有分解:

    [{ m{A}} = alpha eta = left[ {egin{array}{*{20}{c}}
    {{a_1}}&{{a_2}}&{...}&{{a_n}}
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {{b_1}}\
    {{b_2}}\
    {...}\
    {{b_n}}
    end{array}} ight]]

    (2)$lambda (A) = { tr(A),0,...,0} $(n-1个0),$lambda_{1}=tr(A)$ 且$Aalpha = lambda_{1} alpha$

    证明:

    [Aalpha  = alpha eta alpha  = alpha (eta alpha ) = alpha tr(A) = tr(A)alpha  Rightarrow lambda  = tr(A),X = alpha ]

    (3)$eta X=0$有n-1个无关解

    证明:任取$eta X=0$的一个解,有$eta Y=0$:

    [AY = (alpha eta Y) = alpha (eta Y) = 0Y]

    所以$Y$为0根的特征向量,所以$eta X=0$恰有n-1个解

    平移法则:

    (1)$A pm cI$与A有相同的特征向量

    [{ m{AX}} = lambda X Rightarrow AX pm cX = lambda X pm cX Rightarrow (A pm cI)X = (lambda  pm c)x]

    (2)$lambda (A pm cI) = { {lambda _1} pm c,{lambda _2} pm c,...,{lambda _n} pm c} $与$lambda (A) = { {lambda _1},{lambda _2},...,{lambda _n}} $

    (3)$lambda (kA) = { k{lambda _1},k{lambda _2},...,k{lambda _n}} $与$lambda (A) = { {lambda _1},{lambda _2},...,{lambda _n}}$

    换位公式:$A=A_{n imes p}$,$B=B_{p imes n}$,$AB in {C^{n imes n}},BA in {C^{p imes p}}$,有

    (1)$left| {lambda I - AB} ight| = {lambda ^{n - p}}left| {lambda I - BA} ight|$

    (2)AB与BA的特征值只差n-p个0

    [egin{array}{l}
    lambda (BA) = { {lambda _1},{lambda _2},...,{lambda _n}} \
    lambda (AB) = { {lambda _1},{lambda _2},...,{lambda _n},0,...,0}
    end{array}]

    (3)$tr(AB) = tr(BA) = {lambda _1} + {lambda _2} + ... + {lambda _n}$

  • 相关阅读:
    1082 射击比赛 (20 分)
    1091 N-自守数 (15 分)
    1064 朋友数 (20 分)
    1031 查验身份证 (15 分)
    1028 人口普查 (20 分)
    1059 C语言竞赛 (20 分)
    1083 是否存在相等的差 (20 分)
    1077 互评成绩计算 (20 分)
    792. 高精度减法
    791. 高精度加法
  • 原文地址:https://www.cnblogs.com/codeDog123/p/10206782.html
Copyright © 2011-2022 走看看