zoukankan      html  css  js  c++  java
  • 特征根求解

    秩1方阵公式:若方阵$A=A_{n imes n}, rank(A)=1$,则有如下性质

    (1)有分解:

    [{ m{A}} = alpha eta = left[ {egin{array}{*{20}{c}}
    {{a_1}}&{{a_2}}&{...}&{{a_n}}
    end{array}} ight]left[ {egin{array}{*{20}{c}}
    {{b_1}}\
    {{b_2}}\
    {...}\
    {{b_n}}
    end{array}} ight]]

    (2)$lambda (A) = { tr(A),0,...,0} $(n-1个0),$lambda_{1}=tr(A)$ 且$Aalpha = lambda_{1} alpha$

    证明:

    [Aalpha  = alpha eta alpha  = alpha (eta alpha ) = alpha tr(A) = tr(A)alpha  Rightarrow lambda  = tr(A),X = alpha ]

    (3)$eta X=0$有n-1个无关解

    证明:任取$eta X=0$的一个解,有$eta Y=0$:

    [AY = (alpha eta Y) = alpha (eta Y) = 0Y]

    所以$Y$为0根的特征向量,所以$eta X=0$恰有n-1个解

    平移法则:

    (1)$A pm cI$与A有相同的特征向量

    [{ m{AX}} = lambda X Rightarrow AX pm cX = lambda X pm cX Rightarrow (A pm cI)X = (lambda  pm c)x]

    (2)$lambda (A pm cI) = { {lambda _1} pm c,{lambda _2} pm c,...,{lambda _n} pm c} $与$lambda (A) = { {lambda _1},{lambda _2},...,{lambda _n}} $

    (3)$lambda (kA) = { k{lambda _1},k{lambda _2},...,k{lambda _n}} $与$lambda (A) = { {lambda _1},{lambda _2},...,{lambda _n}}$

    换位公式:$A=A_{n imes p}$,$B=B_{p imes n}$,$AB in {C^{n imes n}},BA in {C^{p imes p}}$,有

    (1)$left| {lambda I - AB} ight| = {lambda ^{n - p}}left| {lambda I - BA} ight|$

    (2)AB与BA的特征值只差n-p个0

    [egin{array}{l}
    lambda (BA) = { {lambda _1},{lambda _2},...,{lambda _n}} \
    lambda (AB) = { {lambda _1},{lambda _2},...,{lambda _n},0,...,0}
    end{array}]

    (3)$tr(AB) = tr(BA) = {lambda _1} + {lambda _2} + ... + {lambda _n}$

  • 相关阅读:
    搭建UEFI PXE 基于linux相关资料
    SLES 搭建dhcp6服务器
    SUSE Linux 11架设Apache虚拟主机
    Virtualbox 安装SLES11 SP4系统后安装Guest Additions
    centos7 安装wireshark
    RHEL7.x 安装virtualbox增强组件
    Readhat 7.x禁用防火墙
    Debian普通用户添加sudo权限
    Virtualbox 错误提示"VT-x is not available (VERR_VMX_NO_VMX)"解决办法
    VNC 下载地址和key
  • 原文地址:https://www.cnblogs.com/codeDog123/p/10206782.html
Copyright © 2011-2022 走看看