思路:变换一下坐标系新的坐标系就是给定的两条直线,变换之后求 x,y 都严格递增的点的个数的max;
求 x,y 都严格递增的点的个数的max,按照x的从小到大排序,x相同的按照y的从大到小排序然后对y的值进行LIS
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> #include<cmath> #include<vector> using namespace std; typedef long long int LL; const int INF=2e9+1e8; const int SIZE =1e5+100; int n,a,b,c,d; struct Point { double x,y; }; Point point[SIZE]; double dp[SIZE]; struct StraightLine { double A,B,C; };// 一条直线方程为: A*x + B*y + C=0 bool is_inside(Point p) { if(a*p.x<b*p.y&&d*p.y<c*p.x) return true; if(a*p.x>b*p.y&&d*p.y>c*p.x) return true; return false; } double dist(Point x,Point y) { return sqrt((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*((x.y-y.y))); } Point GetPoint(StraightLine x,StraightLine y) //得到两直线的交点 前提有一个交点。 { Point ans; ans.y=(y.C*x.A-x.C*y.A)/(y.A*x.B-x.A*y.B); ans.x=(y.C*x.B-x.C*y.B)/(x.A*y.B-y.A*x.B); return ans; } Point change(Point p) { Point ans; StraightLine x,y; x.A=(double)a,x.B=(double)-b,x.C=0.; y.A=(double)c,y.B=(double)-d,x.C=(p.y*b-p.x*a); ans.x=dist(p,GetPoint(x,y)); x.A=(double)c,x.B=(double)-d,x.C=0.; y.A=(double)a,y.B=(double)-b,x.C=(p.y*d-p.x*c); ans.y=dist(p,GetPoint(x,y)); return ans; } bool cmp(Point x,Point y) { if(x.x==y.x) return x.y>y.y; else return x.x<y.x; } int LIS(vector<double>& v) { int counter=-1,len=(int)v.size(); for(int i=0; i<=len+1; i++) dp[i]=1e20; for(int i=0; i<len; i++) { int k=lower_bound(dp,dp+len,v[i])-dp; dp[k]=v[i]; counter=max(k,counter); } return counter+1; } int main() { int ncase; cin>>ncase; while(ncase--) { scanf("%d%d%d%d%d",&n,&a,&b,&c,&d); int k=0; while(n--) { Point temp; scanf("%lf%lf",&temp.x,&temp.y); if(is_inside(temp)) { point[k++]=change(temp); } } sort(point,point+k,cmp); vector<double>num; for(int i=0; i<k; i++) num.push_back(point[i].y); cout<<LIS(num)<<endl; } return 0; }