zoukankan      html  css  js  c++  java
  • Nginx学习笔记(五) 源码分析&内存模块&内存对齐

    Nginx源码分析&内存模块

      今天总结了下C语言的内存分配问题,那么就看看Nginx的内存分配相关模型的具体实现。还有内存对齐的内容~~不懂的可以看看~~

    src/os/unix/Ngx_alloc.h&Ngx_alloc.c

      先上源码:

    /*
     * Copyright (C) Igor Sysoev
     * Copyright (C) Nginx, Inc.
     */
    
    
    #ifndef _NGX_ALLOC_H_INCLUDED_
    #define _NGX_ALLOC_H_INCLUDED_
    
    
    #include <ngx_config.h>
    #include <ngx_core.h>
    
    
    void *ngx_alloc(size_t size, ngx_log_t *log);
    void *ngx_calloc(size_t size, ngx_log_t *log);
    
    #define ngx_free          free
    
    
    /*
     * Linux has memalign() or posix_memalign()
     * Solaris has memalign()
     * FreeBSD 7.0 has posix_memalign(), besides, early version's malloc()
     * aligns allocations bigger than page size at the page boundary
     */
    
    #if (NGX_HAVE_POSIX_MEMALIGN || NGX_HAVE_MEMALIGN)
    
    void *ngx_memalign(size_t alignment, size_t size, ngx_log_t *log);
    
    #else
    
    #define ngx_memalign(alignment, size, log)  ngx_alloc(size, log)
    
    #endif
    
    
    extern ngx_uint_t  ngx_pagesize;
    extern ngx_uint_t  ngx_pagesize_shift;
    extern ngx_uint_t  ngx_cacheline_size;
    
    
    #endif /* _NGX_ALLOC_H_INCLUDED_ */
    View Code

      这里部分代码是关于内存的申请的,是对Linux原有的内存申请函数的再一次封装。

      1.函数声明

    void *ngx_alloc(size_t size, ngx_log_t *log);    //申请空间
    void *ngx_calloc(size_t size, ngx_log_t *log);   //申请空间,并初始化为0

      2.源码解析

    void * ngx_alloc(size_t size, ngx_log_t *log)
    {
        void  *p;
        p = malloc(size);//malloc就是返回一个void*指针,指向分配的size大小的内存
        if (p == NULL) {
            ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
                          "malloc(%uz) failed", size);
        }
        ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, log, 0, "malloc: %p:%uz", p, size);
        return p;
    }
    
    void * ngx_calloc(size_t size, ngx_log_t *log)
    {
        void  *p;
        p = ngx_alloc(size, log);//调用上面的函数
        if (p) {
            ngx_memzero(p, size);//并初始化为0,#define ngx_memzero(buf, n) (void) memset(buf, 0, n)
      }
    return p;
    }

      3.POSIX_MEMALIGN与MEMALIGN申请对齐内存,可以参考Linux man page:http://man7.org/linux/man-pages/man3/valloc.3.html

    #if (NGX_HAVE_POSIX_MEMALIGN || NGX_HAVE_MEMALIGN)
    
    void *ngx_memalign(size_t alignment, size_t size, ngx_log_t *log);
    
    #else
    
    #define ngx_memalign(alignment, size, log)  ngx_alloc(size, log)
    
    #endif
    #if (NGX_HAVE_POSIX_MEMALIGN)
    void * ngx_memalign(size_t alignment, size_t size, ngx_log_t *log)
    {
        void  *p;
        int    err;
        err = posix_memalign(&p, alignment, size);//stdlib.h 新接口
    
        if (err) {
            ngx_log_error(NGX_LOG_EMERG, log, err,
                          "posix_memalign(%uz, %uz) failed", alignment, size);
            p = NULL;
        }
        ngx_log_debug3(NGX_LOG_DEBUG_ALLOC, log, 0,
                       "posix_memalign: %p:%uz @%uz", p, size, alignment);
        return p;
    }
    #elif (NGX_HAVE_MEMALIGN)
    void * ngx_memalign(size_t alignment, size_t size, ngx_log_t *log)
    {
        void  *p;
        p = memalign(alignment, size);//malloc.h 老接口
        if (p == NULL) {
            ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
                          "memalign(%uz, %uz) failed", alignment, size);
        }
        ngx_log_debug3(NGX_LOG_DEBUG_ALLOC, log, 0,
                       "memalign: %p:%uz @%uz", p, size, alignment);
        return p;
    }
    #endif

    数据对齐

    概念:

      对齐跟数据在内存中的位置有关,为了使CPU能够对变量进行快速的访问,变量的起始地址应该具有某些特性,即所谓的”对齐”。 比如4字节的int型,其起始地址应该位于4字节的边界上,即起始地址能够被4整除。

    功能:

      字节对齐的作用不仅是便于cpu快速访问,同时合理的利用字节对齐可以有效地节省存储空间。

    具体方法:

      指定对齐值:#pragma pack (value)时的指定对齐值value。

      取消对齐值:#pragma pach ()

    具体分析:

    struct A{
        char a;   //1
        int b;    //4
        short c;  //2
    }
    
    struct B{
        int b;
        char a;
        short c;
    }
    
    #pragma pack(1)
    struct C{
        char a;
        int b;
        short c;
    }
    #pragma pack()
    
    #pragma pach(2)
    struct D{
        char a;
        int b;
        short c;
    }
    #pragma pack()

      代码如上,想一想答案都是多少?

        sizeof(struct A)=10  //默认情况下,1字节的a在0x00000000,而整形b只能放在0x00000004(必须从4的整数倍开始)~0x00000007,最后的c在0x00000008~0x00000009

      sizeof(struct B)=8    //分析同上

      sizeof(struct C)=7    //这里指定了对齐值为1,那么a在0x00000000,b在0x00000001~0x0000004,c在0x00000005~0x00000006

      sizeof(struct D)=8    //分析同上

    A、B、C、D的内存地址如图:

    地址 0x00000000 0x01 0x02 0x03 004 0x05 0x06 0x07 0x08 0x09
    A a       b c
    B b a   c    
    C a b c      
    D a   b c    

     src/core/Ngx_palloc.h&Ngx_palloc.cn内存池分析

      上源码:

    /*
     * Copyright (C) Igor Sysoev
     * Copyright (C) Nginx, Inc.
     */
    
    
    #ifndef _NGX_PALLOC_H_INCLUDED_
    #define _NGX_PALLOC_H_INCLUDED_
    
    
    #include <ngx_config.h>
    #include <ngx_core.h>
    
    
    /*
     * NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86.
     * On Windows NT it decreases a number of locked pages in a kernel.
     */
    #define NGX_MAX_ALLOC_FROM_POOL  (ngx_pagesize - 1)
    
    #define NGX_DEFAULT_POOL_SIZE    (16 * 1024)
    
    #define NGX_POOL_ALIGNMENT       16
    #define NGX_MIN_POOL_SIZE                                                     
        ngx_align((sizeof(ngx_pool_t) + 2 * sizeof(ngx_pool_large_t)),            
                  NGX_POOL_ALIGNMENT)
    
    
    typedef void (*ngx_pool_cleanup_pt)(void *data);
    
    typedef struct ngx_pool_cleanup_s  ngx_pool_cleanup_t;
    
    struct ngx_pool_cleanup_s {
        ngx_pool_cleanup_pt   handler;
        void                 *data;
        ngx_pool_cleanup_t   *next;
    };
    
    
    typedef struct ngx_pool_large_s  ngx_pool_large_t;
    
    struct ngx_pool_large_s {
        ngx_pool_large_t     *next;
        void                 *alloc;
    };
    
    
    typedef struct {
        u_char               *last;
        u_char               *end;
        ngx_pool_t           *next;
        ngx_uint_t            failed;
    } ngx_pool_data_t;
    
    
    struct ngx_pool_s {
        ngx_pool_data_t       d;
        size_t                max;
        ngx_pool_t           *current;
        ngx_chain_t          *chain;
        ngx_pool_large_t     *large;
        ngx_pool_cleanup_t   *cleanup;
        ngx_log_t            *log;
    };
    
    
    typedef struct {
        ngx_fd_t              fd;
        u_char               *name;
        ngx_log_t            *log;
    } ngx_pool_cleanup_file_t;
    
    
    void *ngx_alloc(size_t size, ngx_log_t *log);
    void *ngx_calloc(size_t size, ngx_log_t *log);
    
    ngx_pool_t *ngx_create_pool(size_t size, ngx_log_t *log);
    void ngx_destroy_pool(ngx_pool_t *pool);
    void ngx_reset_pool(ngx_pool_t *pool);
    
    void *ngx_palloc(ngx_pool_t *pool, size_t size);
    void *ngx_pnalloc(ngx_pool_t *pool, size_t size);
    void *ngx_pcalloc(ngx_pool_t *pool, size_t size);
    void *ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment);
    ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p);
    
    
    ngx_pool_cleanup_t *ngx_pool_cleanup_add(ngx_pool_t *p, size_t size);
    void ngx_pool_run_cleanup_file(ngx_pool_t *p, ngx_fd_t fd);
    void ngx_pool_cleanup_file(void *data);
    void ngx_pool_delete_file(void *data);
    
    
    #endif /* _NGX_PALLOC_H_INCLUDED_ */
    View Code

      1.#define NGX_DEFAULT_POOL_SIZE    (16 * 1024),表示NGX默认的内存池的大小为16*1024

      2.结构体ngx_pool_data_t内存数据块,ngx_pool_s内存池头部结构

     typedef struct {
       u_char      *last;  //当前内存池分配到此处,即下一次分配从此处开始
       u_char      *end;   //内存池结束位置
       ngx_pool_t  *next;  //内存池里面有很多块内存,这些内存块就是通过该指针连成链表的
       ngx_uint_t  failed; //内存池分配失败次数
     } ngx_pool_data_t;    //内存池的数据块位置信息
    
    
     struct ngx_pool_s{    //内存池头部结构
        ngx_pool_data_t     d;       //内存池的数据块
        size_t              max;     //内存池数据块的最大值
        ngx_pool_t         *current; //指向当前内存池
        ngx_chain_t        *chain;   //该指针挂接一个ngx_chain_t结构
        ngx_pool_large_t   *large;   //大块内存链表,即分配空间超过max的内存
        ngx_pool_cleanup_t *cleanup; //释放内存池的callback
        ngx_log_t          *log;     //日志信息
    };

      3.创建和销毁内存池:

    ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log)//创建内存池
    { ngx_pool_t
    *p; p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log); //申请对齐内存空间 if (p == NULL) { return NULL; } p->d.last = (u_char *) p + sizeof(ngx_pool_t); //下一次分配的开始地址,sizeof(ngx_pool_t)为申请的P的大小 p->d.end = (u_char *) p + size;             //内存池结束位置,size是申请空间的小小 p->d.next = NULL; //内存链表的指向下一内存块的指针为空 p->d.failed = 0; //失败次数 size = size - sizeof(ngx_pool_t); // p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;                                  //内存池最大块            p->current = p; //当前指向的内存块 p->chain = NULL; p->large = NULL; p->cleanup = NULL; p->log = log; return p; } 
    //该函数将遍历内存池链表,所有释放内存,如果注册了clenup(也是一个链表结构)亦将遍历该cleanup链表结构依次调用clenuphandler清理。同时,还将遍历large链表,释放大块内存
    void
    ngx_destroy_pool(ngx_pool_t *pool)//删除全部内存池(链上的所有内存块) { ngx_pool_t *p, *n; ngx_pool_large_t *l; ngx_pool_cleanup_t *c;   //根据注册的ngx_pool_cleanup_s 来逐个销毁内存 for (c = pool->cleanup; c; c = c->next) {    if (c->handler) {       ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "run cleanup: %p", c);       c->handler(c->data);      } } //销毁大内存块 for (l = pool->large; l; l = l->next) { ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc); if (l->alloc) { ngx_free(l->alloc); } } #if (NGX_DEBUG) /* * we could allocate the pool->log from this pool * so we cannot use this log while free()ing the pool */ for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) { ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p, unused: %uz", p, p->d.end - p->d.last); if (n == NULL) { break; } } #endif
      //普通内存池
      for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) { ngx_free(p); if (n == NULL) { break; } }

      4.重置内存池:

    //该函数将释放所有large内存,并且将d->last指针重新指向ngx_pool_t结构之后数据区的开始位置,同刚创建后的位置相同。
    void
    ngx_reset_pool(ngx_pool_t *pool) { ngx_pool_t *p; ngx_pool_large_t *l; //删除大内存块 for (l = pool->large; l; l = l->next) { if (l->alloc) { ngx_free(l->alloc);//专门用于释放大内存ngx_free() } } //大内存块置为空 pool->large = NULL; //重新修改每个内存块的大小 for (p = pool; p; p = p->d.next) { p->d.last = (u_char *) p + sizeof(ngx_pool_t); } }

      5.注册cleanup

    //cleanup结构体
    struct ngx_pool_cleanup_s {
        ngx_pool_cleanup_pt   handler;
        void                 *data;
        ngx_pool_cleanup_t   *next;
    };
    
    //注册cleanup函数,为以后清除做准备
    ngx_pool_cleanup_t * ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)
    {
        ngx_pool_cleanup_t  *c;
        c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));//申请内存池
        if (c == NULL) {
            return NULL;
        }
        if (size) {
            c->data = ngx_palloc(p, size); //申请数据空间
            if (c->data == NULL) {
                return NULL;
            }
        } else {
            c->data = NULL;
        }
        c->handler = NULL;
        c->next = p->cleanup;
        p->cleanup = c;
        ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);
        return c;
    }

       6.内存分配函数

    void *ngx_palloc(ngx_pool_t *pool, size_t size);
    void *ngx_pnalloc(ngx_pool_t *pool, size_t size);
    void *ngx_pcalloc(ngx_pool_t *pool, size_t size);
    void *ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment);

      主要介绍一下ngx_palloc()这个函数:

    void * ngx_palloc(ngx_pool_t *pool, size_t size)
    {
        u_char      *m;
        ngx_pool_t  *p;
    
        if (size <= pool->max) {//max与待分配内存进行比较
            p = pool->current;//从当前位置开始遍历pool链表
    
            do {
                m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT);
                if ((size_t) (p->d.end - m) >= size) {
                    p->d.last = m + size;
                    return m;                     //成功分配size大小的内存
                }
                p = p->d.next;
            } while (p);
    
            return ngx_palloc_block(pool, size);  //链表里没有能分配size大小内存的节点,则生成一个新的节点并在其中分配内存 
        }
        return ngx_palloc_large(pool, size);      //大于max值,则在large链表里分配内存
    }

      其中的ngx_palloc_block()函数:

    //该函数分配一块内存,并加入到内存池中
    static
    void * ngx_palloc_block(ngx_pool_t *pool, size_t size) { u_char *m; size_t psize; ngx_pool_t *p, *new, *current; psize = (size_t) (pool->d.end - (u_char *) pool); //计算内存池大小 m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log); //申请与原来相同的大小,这样的话内存池就是以2的指数幂增大 if (m == NULL) { return NULL; } new = (ngx_pool_t *) m; //新的内存块 new->d.end = m + psize; new->d.next = NULL; new->d.failed = 0; m += sizeof(ngx_pool_data_t);//让m指向该块内存ngx_pool_data_t结构体之后数据区起始位 m = ngx_align_ptr(m, NGX_ALIGNMENT); new->d.last = m + size; //在数据区分配size大小的内存并设置last指针 current = pool->current; for (p = current; p->d.next; p = p->d.next) { if (p->d.failed++ > 4) { //失败4次以上移动current指针 current = p->d.next; } } p->d.next = new; //将这次分配的内存块new加入该内存池 pool->current = current ? current : new; return m; }

    参考

    http://hi.baidu.com/langwan/item/fdd3bf4a4ef66aefa4c06629

    http://blog.csdn.net/wallwind/article/details/7463979

    http://blog.csdn.net/livelylittlefish/article/details/6586946

  • 相关阅读:
    navigateTo防止多次跳转
    vue中的绑定class和微信小程序中的绑定class的区别
    js同步和异步
    本地存储和vuex使用对比
    微信小程序页面跳转区别总结
    CAS-技术专区-认证服务器cas-server搭建
    CAS-技术专区-SSO配置完整案例(静态认证+数据库认证)
    SpringCloud-技术专区-实战案例-Zuul整合OAuth2.0认证服务
    OAuth2.0协议专区-SpringCloud安全-集成OAuth2实现身份认证和单点登录
    OAuth2.0协议专区-SpringCloud微服务实战-基于OAUTH2.0统一认证授权的微服务基础架构
  • 原文地址:https://www.cnblogs.com/coder2012/p/3151346.html
Copyright © 2011-2022 走看看