起源
关于大端小端名词的由来,有一个有趣的故事,来自于Jonathan Swift的《格利佛游记》:Lilliput和Blefuscu这两个强国在过去的36个月中一直在苦战。战争的原因:大家都知道,吃鸡蛋的时候,原始的方法是打破鸡蛋较大的一端,可以那时的皇帝的祖父由于小时侯吃鸡蛋,按这种方法把手指弄破了,因此他的父亲,就下令,命令所有的子民吃鸡蛋的时候,必须先打破鸡蛋较小的一端,违令者重罚。然后老百姓对此法令极为反感,期间发生了多次叛乱,其中一个皇帝因此送命,另一个丢了王位,产生叛乱的原因就是另一个国家Blefuscu的国王大臣煽动起来的,叛乱平息后,就逃到这个帝国避难。据估计,先后几次有11000余人情愿死也不肯去打破鸡蛋较小的端吃鸡蛋。这个其实讽刺当时英国和法国之间持续的冲突。Danny Cohen一位网络协议的开创者,第一次使用这两个术语指代字节顺序,后来就被大家广泛接受。
定义
Big-Endian和Little-Endian的定义如下:
1、Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
2、Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
举一个例子,比如数字0x12 34 56 78在内存中的表示形式为:
1、大端模式:
低地址 -----------------> 高地址
0x12 | 0x34 | 0x56 | 0x78
2、小端模式:
低地址 ------------------> 高地址
0x78 | 0x56 | 0x34 | 0x12
数组在大端小端情况下的存储
以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下:
高地址
---------------
buf[3] (0x78) -- 低位
buf[2] (0x56)
buf[1] (0x34)
buf[0] (0x12) -- 高位
---------------
低地址
Little-Endian: 低地址存放低位,如下:
高地址
---------------
buf[3] (0x12) -- 高位
buf[2] (0x34)
buf[1] (0x56)
buf[0] (0x78) -- 低位
--------------
低地址
产生原因
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
如何判断机器的字节序
可以编写一个小的测试程序来判断机器的字节序:
bool isBigEndian()
{
int a = 0x1234;
char b = *(char *)&a; //通过将int强制类型转换成char单字节,通过判断起始存储位置。即等于 取b等于a的低地址部分
if( b == 0x12)
{
return true;
}
return false;
}
联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性可以轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写:
bool isBigEndian()
{
union NUM
{
int a;
char b;
}num;
num.a = 0x1234;
if( num.b == 0x12 )
{
return true;
}
return false;
}
大小端模式转换
对于字数据(16位)
#define BigtoLittle16(A) (( ((uint16)(A) & 0xff00) >> 8) |
(( (uint16)(A) & 0x00ff) << 8))
对于双字数据(32位):
#define BigtoLittle32(A) ((( (uint32)(A) & 0xff000000) >> 24) |
(( (uint32)(A) & 0x00ff0000) >> 8) |
(( (uint32)(A) & 0x0000ff00) << 8) |
(( (uint32)(A) & 0x000000ff) << 24))
编程实践
进行网络数据传递时,必须要考虑端模式的转换,Java和所有的网络通讯协议都是使用Big-Endian的编码。在Socket接口编程中,以下几个函数用于大小端字节序的转换。
#define ntohs(n) //16位数据类型网络字节顺序到主机字节顺序的转换
#define htons(n) //16位数据类型主机字节顺序到网络字节顺序的转换
#define ntohl(n) //32位数据类型网络字节顺序到主机字节顺序的转换
#define htonl(n) //32位数据类型主机字节顺序到网络字节顺序的转换