原题链接:http://ac.jobdu.com/problem.php?pid=1008
- 题目描述:
-
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
- 输入:
-
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
- 输出:
-
输出 一行有两个数, 最短距离及其花费。
- 样例输入:
-
3 2 1 2 5 6 2 3 4 5 1 3 0 0
- 样例输出:
-
9 11
- 来源:2010年浙江大学计算机及软件工程研究生机试真题
- 题解:
- 这是一道简单的最短路径问题,唯一多出的是在最短路径基础上还有最小代价的限制。采用邻接表+迪杰斯特拉算法实现。
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <limits.h> 5 #include <stdlib.h> 6 using namespace std; 7 8 #define MAX_VERTEX_NUM 1001 9 #define MAX_ARC_NUM 200001 10 11 /*******图的邻接表表示法**********/ 12 typedef struct ArcNode 13 { 14 int adjvex; //该弧所指向顶点的位置 15 struct ArcNode *nextarc; //指向下一条弧的指针 16 int dist; 17 int cost; 18 }ArcNode; 19 20 typedef struct VNode 21 { 22 int dist,cost;//起始点到当前这个点的距离和花费 23 ArcNode *firstarc; //指向第一条依附该顶点的弧的指针 24 }VNode,AdjList[MAX_VERTEX_NUM]; 25 26 typedef struct 27 { 28 AdjList vertices;//顶点数组 29 int vexnum; 30 int arcnum; //当前图的顶点数和弧数 31 }ALGraph; 32 33 bool final[1001]; 34 int a,b,d,c; 35 int s,t; 36 37 int findNearest(ALGraph &G) 38 { 39 int i; 40 int min = INT_MAX; 41 int res = -1; 42 int cnt=0; 43 int arr[1001]; 44 for(i = 0; i<G.vexnum; i++) 45 if(G.vertices[i].dist<min && !final[i]) 46 { 47 min = G.vertices[i].dist; 48 arr[cnt] = i; 49 cnt++; 50 } 51 min = INT_MAX; 52 if(cnt>0) 53 { 54 for(i = 0; i<cnt; i++) 55 if(G.vertices[arr[i]].cost<min) 56 { 57 min = G.vertices[arr[i]].cost; 58 res = arr[i]; 59 } 60 } 61 return res; 62 } 63 void dij(ALGraph &G) 64 { 65 int i,w,j; 66 int min; 67 int near; 68 ArcNode *p,*q; 69 int v; 70 for(i = 0; i<G.vexnum; i++) 71 G.vertices[i].dist = G.vertices[i].cost = INT_MAX; 72 73 G.vertices[s-1].dist = G.vertices[s-1].cost = 0; 74 75 for (i=1; i<G.vexnum;i++) //更新n-1次 76 { 77 min = INT_MAX; 78 near = findNearest(G); 79 if(near==-1) 80 break; 81 final[near] = true; 82 83 for (p=G.vertices[near].firstarc; p!=NULL; p=p->nextarc) 84 { 85 v = p->adjvex; 86 if(G.vertices[near].dist+p->dist<G.vertices[v].dist && !final[v])//更新节点 87 { 88 G.vertices[v].dist = G.vertices[near].dist+p->dist; 89 G.vertices[v].cost = G.vertices[near].cost+p->cost; 90 } 91 else if(G.vertices[near].dist+p->dist == G.vertices[v].dist && !final[v])//如果存在多条最短路径,更新最小花费节点 92 { 93 if(G.vertices[near].cost+p->cost<G.vertices[v].cost) 94 G.vertices[v].cost = G.vertices[near].cost+p->cost; 95 } 96 } 97 }//for 98 } 99 100 int main() 101 { 102 // freopen("dij.in","r",stdin); 103 //freopen("dij.out","w",stdout); 104 ALGraph G; 105 ArcNode *p,*q; 106 int vexnum,arcnum; 107 //G = (ALGraph*)malloc(sizeof(ALGraph)); 108 while(scanf("%d%d",&vexnum,&arcnum)!=EOF && (vexnum!=0 || arcnum!=0) ) 109 { 110 G.vexnum = vexnum; 111 G.arcnum = arcnum; 112 memset(final,0,sizeof(final)); 113 for(int i=0; i<G.vexnum; i++) 114 G.vertices[i].firstarc = NULL; 115 for(int i=0; i<G.arcnum; i++) 116 { 117 scanf("%d%d%d%d",&a,&b,&d,&c); 118 119 if (G.vertices[a-1].firstarc==NULL) 120 { 121 G.vertices[a-1].firstarc = (ArcNode *)malloc(sizeof(ArcNode)); 122 123 G.vertices[a-1].firstarc->adjvex = b-1; 124 G.vertices[a-1].firstarc->dist = d; 125 G.vertices[a-1].firstarc->cost = c; 126 G.vertices[a-1].firstarc->nextarc = NULL; 127 } 128 else 129 { 130 for (p=G.vertices[a-1].firstarc; p->nextarc!=NULL; p=p->nextarc); 131 132 q = (ArcNode*)malloc(sizeof(ArcNode)); 133 q->adjvex = b-1; 134 q->dist = d; 135 q->cost = c; 136 q->nextarc = NULL; 137 138 p->nextarc = q; 139 } 140 141 } 142 scanf("%d%d",&s,&t); 143 dij(G); 144 printf("%d %d ",G.vertices[t-1].dist,G.vertices[t-1].cost); 145 } 146 return 0; 147 }