zoukankan      html  css  js  c++  java
  • 56. Merge Intervals

    Given a collection of intervals, merge all overlapping intervals.

    For example,
    Given [1,3],[2,6],[8,10],[15,18],
    return [1,6],[8,10],[15,18].

     1 /**
     2  * Definition for an interval.
     3  * public class Interval {
     4  *     int start;
     5  *     int end;
     6  *     Interval() { start = 0; end = 0; }
     7  *     Interval(int s, int e) { start = s; end = e; }
     8  * }
     9  */
    10 public class Solution {
    11     public List<Interval> merge(List<Interval> intervals) {
    12         if(intervals.size()<2) return intervals;
    13         // sort by ascending start pointer by using annoymous comparator
    14         //intervals.sort((i1,i2)->Integer.compare(i1.start,i2.start));
    15         Comparator<Interval> comp = new Comparator<Interval>(){
    16             public int compare(Interval i1,Interval i2){
    17                 return i1.start-i2.start;
    18             }
    19         };
    20         Collections.sort(intervals,comp);
    21         int start = intervals.get(0).start;
    22         int end = intervals.get(0).end;
    23         // store the result Interval list
    24         List<Interval> result = new ArrayList<>();
    25         for(Interval interval:intervals){
    26             if(interval.start<=end){
    27                 // overlapping intervals,move the end if needed
    28                 end = Math.max(end,interval.end);
    29             }else{
    30                 //Disjoint interval, add the previous one and reset the bounds
    31                 result.add(new Interval(start,end));
    32                 start = interval.start;
    33                 end = interval.end;
    34             }
    35         }
    36         result.add(new Interval(start,end));
    37         return result;
    38     }
    39 }
    40 //as for the run time complexity ,sort time costs nlogn time. compare the intervals and put it into result costs O(n) time ,so the total run time could be nlogn,the space complexity would be O(n);
  • 相关阅读:
    云计算安全概述
    快照技术
    存储可靠性技术之--备份
    存储可靠性技术之 --RAID
    存储方式
    存储技术
    CentOS安装setup
    CentOS7安装iptables防火墙
    CentOS 7.0下使用yum安装MySQL
    The APR based Apache Tomcat Native library
  • 原文地址:https://www.cnblogs.com/codeskiller/p/6362250.html
Copyright © 2011-2022 走看看