Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
本题开始确实能够想到二分查找,但是,却并不知道如何取得最左面和最右面值==target的索引,本题的二分查找是查找两次,一次是找最左面的值==target的索引,一次是找最右面的值==target的索引,拿最左面举例,以上题为例,在7,8之间进行划分,也就是说mid>=和mid<分成两种情况,接下来就是二分查找了,代码如下:
1 public class Solution { 2 public int[] searchRange(int[] nums, int target) { 3 if(nums==null||nums.length==0) return new int[]{-1,-1}; 4 int left = 0; 5 int right = nums.length-1; 6 while(left<right){ 7 int mid = left +(right-left)/2; 8 if(nums[mid]>=target){ 9 right = mid; 10 }else{ 11 left = mid+1; 12 } 13 } 14 if(nums[left]!=target) return new int[]{-1,-1}; 15 int left_index = left; 16 right = nums.length-1; 17 while(left<right){ 18 int mid = left+(right-left)/2+1; 19 if(nums[mid]<=target) left =mid; 20 else{ 21 right = mid-1; 22 } 23 } 24 int right_index = left; 25 return new int[]{left_index,right_index}; 26 } 27 } 28 //the time complexity of this one could be O(logn), the space complexity could be O(1);