zoukankan      html  css  js  c++  java
  • 222. Count Complete Tree Nodes

    Given a complete binary tree, count the number of nodes.

    Definition of a complete binary tree from Wikipedia:
    In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

    本题要求完全二叉树的节点个数,这里我们可以采用二分搜索的方法来做,二叉树的特点是每个非叶子节点都可以分成三部分,一部分是本身节点,一个是左子树,一个是右子树,我们先做一个方法函数来求一个树的高度,然后分别求出该树的高度和其右子树的高度(如果右子树非空),如果右子树的高度等于该树的高度-1,则说明该树的左子树部分是满的,则可以将其左子树的节点树和+递归其右子树;代码如下:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int height(TreeNode root){
    12         return root==null?-1:1+height(root.left);
    13     }
    14     public int countNodes(TreeNode root) {
    15         int h = height(root);
    16         return h<0?0:height(root.right)==h-1?(1<<h)+countNodes(root.right):(1<<h-1)+countNodes(root.left);
    17     }
    18 }
    19 // the run time complexity could be O(loglogn) this is because evey recision will take a height function ,will take longn time,and we have logn steps so the totl run time complexity could be loglogn;the space compexity could be logn; 

    下面采用的是迭代的方法,代码如下:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int height(TreeNode node){
    12         return node==null?-1:1+height(node.left);
    13     }
    14     public int countNodes(TreeNode root) {
    15         int nodes = 0;
    16         int h = height(root);
    17         while(root!=null){
    18             if(height(root.right)==h-1){
    19                 nodes+=(1<<h);
    20                 root = root.right;
    21                 h = height(root);
    22             }else{
    23                 nodes+=(1<<h-1);
    24                 root = root.left;
    25                 h = height(root);
    26             }
    27         }
    28         return nodes;
    29     }
    30 }

    还有一种做法就是,创建两个TreeNode,left和right,当right不为空的时候,左子树一直遍历其左孩子,右子树一直遍历其右孩子,当right为空的时候,左面也为空,则说明没有下一行并且该行是满的;如果左面不为空,则递归其root的左子树和右子树;代码如下:

     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int countNodes(TreeNode root) {
    12         int height = 0;
    13         TreeNode left = root;
    14         TreeNode right = root;
    15         while(right!=null){
    16             height++;
    17             left = left.left;
    18             right = right.right;
    19         }
    20         if(left==null) return (1<<height)-1;
    21         return 1+countNodes(root.left)+countNodes(root.right);
    22     }
    23 }
  • 相关阅读:

    队列
    数据结构简介
    标准模板库
    类模板
    函数模板
    srvctl error
    FLASH BACK
    RAC 设置archive log模式
    CHAPTER 1 Architectural Overview of Oracle Database 11g
  • 原文地址:https://www.cnblogs.com/codeskiller/p/6609497.html
Copyright © 2011-2022 走看看