zoukankan      html  css  js  c++  java
  • Socket connect 等简要分析

    1. connect 系统调用 分析

    #include <sys/types.h> /* See NOTES */
    #include <sys/socket.h>
    int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

    其中的参数解释如下:
    ·int sockfd :套接字描述符。
    ·const struct sockaddr*addr :要连接的地址。
    ·socklen_t addrlen :要连接的地址长度。
    返回值 0 表示成功, -1 表示失败。

    connect 的用途是使用指定的套接字去连接指定的地址。对于面向连接的协议(套接字类型为
    SOCK_STREAM ), connect 只能成功一次(当然要如此,因为真正的连接已经建立了)。如果重复调
    用 connect ,会返回 -1 表示失败,同时错误码为 EISCONN 。而对于非面向连接的协议(套接字类型为
    SOCK_DGRAM ),则可以执行多次 connect (因为这时的 connect 仅仅是设置了默认的目的地址)。

    对于 TCP 套接字来说, connect 实际上是要真正地进行三次握手,所以其默认是一个阻塞操作。那么
    是否可以写一个非阻塞的 TCP connect 代码呢?

    /*
     *	Attempt to connect to a socket with the server address.  The address
     *	is in user space so we verify it is OK and move it to kernel space.
     *
     *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
     *	break bindings
     *
     *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
     *	other SEQPACKET protocols that take time to connect() as it doesn't
     *	include the -EINPROGRESS status for such sockets.
     */
    
    SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
    		int, addrlen)
    {
    	struct socket *sock;
    	struct sockaddr_storage address;
    	int err, fput_needed;
    /* 通过文件描述符fd,找到对应的socket实例。
         * 以fd为索引从当前进程的文件描述符表files_struct实例中找到对应的file实例,
         * 然后从file实例的private_data成员中获取socket实例。
        */
    	sock = sockfd_lookup_light(fd, &err, &fput_needed);
    	if (!sock)
    		goto out;
     /* 把套接字地址从用户空间拷贝到内核空间 */
    	err = move_addr_to_kernel(uservaddr, addrlen, &address);
    	if (err < 0)
    		goto out_put;
    
    	err =
    	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
    	if (err)
    		goto out_put;
    /* 调用Socket层的操作函数,如果是SOCK_STREAM,则proto_ops为inet_stream_ops,
         * 函数指针指向inet_stream_connect()。
         */
    	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
    				 sock->file->f_flags);
    out_put:
    	fput_light(sock->file, fput_needed);
    out:
    	return err;
    }
    
    int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
    			int addr_len, int flags)
    {
    	int err;
    
    	lock_sock(sock->sk);//进入互斥区
    	err = __inet_stream_connect(sock, uaddr, addr_len, flags);
    	release_sock(sock->sk);
    	return err;
    }
    
    /*
     *	Connect to a remote host. There is regrettably still a little
     *	TCP 'magic' in here.
     */
    int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
    			  int addr_len, int flags)
    {
    	struct sock *sk = sock->sk;
    	int err;
    	long timeo;
    /*  长度合法性检查*/
    	if (addr_len < sizeof(uaddr->sa_family))
    		return -EINVAL;
    
    	if (uaddr->sa_family == AF_UNSPEC) {/*  如果协议族为
    AF_UNSPEC ,则先执行*/
    		err = sk->sk_prot->disconnect(sk, flags);
    /* 根据是否成功断开连接,来设置socket状态 */
    		sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
    		goto out;
    	}
    
    	switch (sock->state) {
    	default:
    		err = -EINVAL;
    		goto out;
     /* 此套接口已经和对端的套接口相连接了,即连接已经建立 */
    	case SS_CONNECTED:
    		err = -EISCONN;/* Transport endpoint is already connected */
    		goto out;
    	case SS_CONNECTING:/*连接正在建立中 */
    		err = -EALREADY;/* Operation already in progress */
    		/* Fall out of switch with err, set for this state */
    		break;
    	case SS_UNCONNECTED:
    		err = -EISCONN;
    		if (sk->sk_state != TCP_CLOSE)
    			goto out;
    /* 如果使用的是TCP,则sk_prot为tcp_prot,connect为tcp_v4_connect() */
    		err = sk->sk_prot->connect(sk, uaddr, addr_len);/* 发送SYN包 */
    		if (err < 0)
    			goto out;
    /* 发出SYN包后socket状态设为正在连接 */
    		sock->state = SS_CONNECTING;
    
    		/* Just entered SS_CONNECTING state; the only
    		 * difference is that return value in non-blocking
    		 * case is EINPROGRESS, rather than EALREADY.
    		 */
    		err = -EINPROGRESS;
    		break;
    	}
     /* sock的发送超时时间,非阻塞则为0 */
    	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
    /* 发出SYN包后,等待后续握手的完成 */
    	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
    		int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
    				tcp_sk(sk)->fastopen_req &&
    				tcp_sk(sk)->fastopen_req->data ? 1 : 0;
    /* 如果是非阻塞的,那么就直接返回错误码-EINPROGRESS。
             * socket为阻塞时,使用inet_wait_for_connect()来等待协议栈的处理:
             * 1. 使用SO_SNDTIMEO,睡眠时间超过timeo就返回0,之后返回错误码-EINPROGRESS。
             * 2. 收到信号,就返回剩余的等待时间。之后会返回错误码-ERESTARTSYS或-EINTR。
             * 3. 三次握手成功,被sock I/O事件处理函数唤醒,之后会返回0。
             */
    
    		/* Error code is set above */
    		if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
    			goto out;
    
    		err = sock_intr_errno(timeo);
     /* 进程收到信号,如果err为-ERESTARTSYS,接下来库函数会重新调用connect() */
    
    		if (signal_pending(current))
    			goto out;
    	}
    
    	/* Connection was closed by RST, timeout, ICMP error
    	 * or another process disconnected us.
    	 */
    	if (sk->sk_state == TCP_CLOSE)
    		goto sock_error;
    
    	/* sk->sk_err may be not zero now, if RECVERR was ordered by user
    	 * and error was received after socket entered established state.
    	 * Hence, it is handled normally after connect() return successfully.
    	 */
    /* 更新socket状态为连接已建立 */
    	sock->state = SS_CONNECTED;
    	err = 0;
    out:
    	return err;
    
    sock_error:
    	err = sock_error(sk) ? : -ECONNABORTED;
    	sock->state = SS_UNCONNECTED;
    	if (sk->sk_prot->disconnect(sk, flags))
    		sock->state = SS_DISCONNECTING;
    	goto out;
    }
    EXPORT_SYMB
    
    static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
    {
    	DEFINE_WAIT(wait);
    /* 把等待任务加入到socket的等待队列头部,把进程的状态设为TASK_INTERRUPTIBLE */
    	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
    	sk->sk_write_pending += writebias;
    
    	/* Basic assumption: if someone sets sk->sk_err, he _must_
    	 * change state of the socket from TCP_SYN_*.
    	 * Connect() does not allow to get error notifications
    	 * without closing the socket.
    	 */
    /* 完成三次握手后,状态就会变为TCP_ESTABLISHED,从而退出循环 */
    	while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
    		release_sock(sk);
     /* 进入睡眠,直到超时或收到信号,或者被I/O事件处理函数唤醒。
             * 1. 如果是收到信号退出的,timeo为剩余的jiffies。
             * 2. 如果使用了SO_SNDTIMEO选项,超时退出后,timeo为0。
             * 3. 如果没有使用SO_SNDTIMEO选项,timeo为无穷大,即MAX_SCHEDULE_TIMEOUT,
             *      那么返回值也是这个,而超时时间不定。为了无限阻塞,需要上面的while循环。
             */
    
    		timeo = schedule_timeout(timeo);
    		lock_sock(sk);
    /* 如果进程有待处理的信号,或者睡眠超时了,退出循环,之后会返回错误码 */
    		if (signal_pending(current) || !timeo)
    			break;
    		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
    	}
     /* 等待结束时,把等待进程从等待队列中删除,把当前进程的状态设为TASK_RUNNING */
    	finish_wait(sk_sleep(sk), &wait);
    	sk->sk_write_pending -= writebias;
    	return timeo;
    }
    /**/
    进程的唤醒
     
    
    三次握手中,当客户端收到SYNACK、发出ACK后,连接就成功建立了。
    
    此时连接的状态从TCP_SYN_SENT或TCP_SYN_RECV变为TCP_ESTABLISHED,sock的状态发生变化,
    
    会调用sock_def_wakeup()来处理连接状态变化事件,唤醒进程,connect()就能成功返回了。
    
    sock_def_wakeup()的函数调用路径如下:
    
    tcp_v4_rcv
    
    tcp_v4_do_rcv
    
    tcp_rcv_state_process
    
    tcp_rcv_synsent_state_process
    
    tcp_finish_connect
    
    sock_def_wakeup
    
    wake_up_interruptible_all
    
    __wake_up
    
    void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct inet_connection_sock *icsk = inet_csk(sk);
    
    	tcp_set_state(sk, TCP_ESTABLISHED);
    
    	------------------------
            ----------------------------   
    	
    	if (!sock_flag(sk, SOCK_DEAD)) {
    		sk->sk_state_change(sk);---->// 指向sock_def_wakeup
    /* 如果使用了异步通知,则发送SIGIO通知进程可写 */
    		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
    	}
    }    
    
    static inline void sk_wake_async(struct sock *sk, int how, int band)
    {
    	if (sock_flag(sk, SOCK_FASYNC))
    		sock_wake_async(sk->sk_socket, how, band);
    }
    
    static void sock_def_wakeup(struct sock *sk)
    {
    	struct socket_wq *wq;
    
    	rcu_read_lock();
    	wq = rcu_dereference(sk->sk_wq);
    	if (wq_has_sleeper(wq))
    		wake_up_interruptible_all(&wq->wait);
    	rcu_read_unlock();
    }
    
    //最终调用__wake_up_common(),由于nr_exclusive为0,会把此socket上所有的等待进程都唤醒
    

     udp_prot 是 UDP 协议中所有自定义操作函数的集合。其 connect 的实现函数为 ip4_datagram_connect 。
    其主要是设置了目的 IP 、端口和路由信息

    int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
    {
    	struct inet_sock *inet = inet_sk(sk);
    	struct sockaddr_in *usin = (struct sockaddr_in *) uaddr;
    	struct flowi4 *fl4;
    	struct rtable *rt;
    	__be32 saddr;
    	int oif;
    	int err;
    
    
    	if (addr_len < sizeof(*usin))
    		return -EINVAL;
    
    	if (usin->sin_family != AF_INET)
    		return -EAFNOSUPPORT;
    	//复位路由高速缓冲区的入口地址
    	sk_dst_reset(sk);
    
    	lock_sock(sk);
    	//和套接字绑定的网络设备索引号
    
    	oif = sk->sk_bound_dev_if;
    	saddr = inet->inet_saddr;
    	//如果建立连接的地址是组传送地址,meiyou jiu 重新初始化oif和原地址
    	if (ipv4_is_multicast(usin->sin_addr.s_addr)) {
    		if (!oif)
    			oif = inet->mc_index;
    		if (!saddr)
    			saddr = inet->mc_addr;
    	}
    	fl4 = &inet->cork.fl.u.ip4;
    	/*
    	调用ip_route_connet寻找路由,
    	源路由主要根据源地址、源端口、目的地址、目的端口、输出网络设备额索引号,
    	如果寻找路由失败就返回错误,如果寻找的路由是广播地址路由就要是否路由在高速
    	缓冲区的入口并返回错误。寻找路由成功就把套接字的状态变量sk_state设置为TCP_ESTABLISHED,
    	并把路由保存到套接字的sk->sk_dst_cache数据域
    	*/
    	rt = ip_route_connect(fl4, usin->sin_addr.s_addr, saddr,
    			      RT_CONN_FLAGS(sk), oif,
    			      sk->sk_protocol,
    			      inet->inet_sport, usin->sin_port, sk, true);
    	if (IS_ERR(rt)) {
    		err = PTR_ERR(rt);
    		if (err == -ENETUNREACH)
    			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
    		goto out;
    	}
    	//寻找的路由是广播地址路由,则释放该路由在路由缓冲区的入口
    
    	if ((rt->rt_flags & RTCF_BROADCAST) && !sock_flag(sk, SOCK_BROADCAST)) {
    		ip_rt_put(rt);
    		err = -EACCES;
    		goto out;
    	}
    	if (!inet->inet_saddr)//从路由表中获取的信息更新udp的原地址
    		inet->inet_saddr = fl4->saddr;	/* Update source address */
    	if (!inet->inet_rcv_saddr) {
    		inet->inet_rcv_saddr = fl4->saddr;
    		if (sk->sk_prot->rehash)
    			sk->sk_prot->rehash(sk);
    	}//更新目的地址和目的端口,源端口已经给定了
    	inet->inet_daddr = fl4->daddr;
    	inet->inet_dport = usin->sin_port;
    	sk->sk_state = TCP_ESTABLISHED;
    	inet->inet_id = jiffies;
    
    	sk_dst_set(sk, &rt->dst);
    	err = 0;
    out:
    	release_sock(sk);
    	return err;
    }
    
  • 相关阅读:
    d3的一些总结
    NPashaP的二分图源码部分
    python的web服务器
    d3碰撞源码分析
    测试cnblog文章内部JS
    仿淘宝 vue
    webpack散记---代码分割 和 懒加载
    webpack散记---提取公共代码
    webpack散记--Typescript
    webpack随笔2--编译ES6/ES7
  • 原文地址:https://www.cnblogs.com/codestack/p/11098262.html
Copyright © 2011-2022 走看看