zoukankan      html  css  js  c++  java
  • POJ 3268 双向Dijkstra

    Silver Cow Party
    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 13020 Accepted: 5832

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input
    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output
    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint
    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

    USACO 2007 February Silver

    /*****************************
      author   : Grant Yuan
      time     : 2014/10/4 23:07
      source   : POJ 3268
      algorithm: Dijkstra
    ******************************/
    
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    using namespace std;
    #define MAX 1007
    #define INF 0x7ffffff
    
    struct point{int x,y;};
    int n,m,x;
    int ans;
    point v[MAX];
    int cost[MAX][MAX];
    bool used[MAX];
    int mincost[MAX];
    int start,final;
    int sum[MAX];
    
    void Dijkstra_Go()
    {
        for(int i=1;i<=n;i++)
        {
            used[i]=false;
            mincost[i]=cost[i][x];
        }
        for(int i=1;i<=n;i++)
        {
            int temp=INF;
            int k=-1;
            for(int j=1;j<=n;j++)
            {
                if(!used[j]&&mincost[j]<temp)
                {
                    temp=mincost[j];
                    k=j;
                }
            }
            if(k==-1) break;
            used[k]=true;
            for(int j=1;j<=n;j++)
            {
                if(!used[j]) mincost[j]=min(mincost[j],mincost[k]+cost[j][k]);
            }
        }
    }
    void Dijkstra_Back()
    {
        for(int i=1;i<=n;i++)
        {
            used[i]=false;
            mincost[i]=cost[x][i];
        }
        for(int i=1;i<=n;i++)
        {
            int temp=INF;int k=-1;
            for(int j=1;j<=n;j++)
            {
                if(!used[j]&&mincost[j]<temp)
                {
                    temp=mincost[j];
                    k=j;
                }
    
            }
            if(k==-1) break;
            used[k]=true;
            for(int j=1;j<=n;j++)
            {
                if(!used[j]) mincost[j]=min(mincost[j],mincost[k]+cost[k][j]);
            }
        }
    }
    int main()
    {
       while(~scanf("%d%d%d",&n,&m,&x)){
        ans=0;
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=n;i++)
          for(int j=1;j<=n;j++)
            cost[i][j]=INF;
        for(int i=1;i<=n;i++) cost[i][i]=0;
        for(int i=1;i<=m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            cost[a][b]=c;
        }
        Dijkstra_Go();
        for(int i=1;i<=n;i++)
        {
            sum[i]=mincost[i];
        }
        Dijkstra_Back();
        for(int i=1;i<=n;i++)
        {
            sum[i]+=mincost[i];
        }
        for(int i=1;i<=n;i++) ans=max(ans,sum[i]);
        printf("%d
    ",ans);}
        return 0;
    }
    



  • 相关阅读:
    Dp~Hrbust1426( 集训队的晚餐 )
    DP~数塔(hrbustoj1004)
    MyEclipse启动性能优化(----加快启动速度)
    很实用的php的缓存类文件示例
    PHP中9大缓存技术总结
    微信公众平台开发(76) 获取用户基本信息
    js中 onreadystatechange 和 onload的区别
    一个js文件导入js的函数
    PHP cURL实现模拟登录与采集使用方法详解教程
    Mysql清空表(truncate)与删除表中数据(delete)的区别
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254417.html
Copyright © 2011-2022 走看看