zoukankan      html  css  js  c++  java
  • POJ 1273 最大流 Dinic

    Drainage Ditches
    Time Limit: 1000MS Memory Limit: 10000K
    Total Submissions: 56802 Accepted: 21824
    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.
    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    Sample Output

    50
    Source

    USACO 93

    <span style="color:#000099;">/**************************************
        author   : Grant Yuan
        time     : 2014/9/16 0:50
        algorithm: 网络流/Dinic
        source   : POJ 1273
    *****************************************/
    
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<queue>
    #include<stack>
    #include<cmath>
    #define MAX 207
    #define INF 0x7fffffff
    using namespace std;
    
    struct edge{int to,cap,rev;};
    vector<edge> G[MAX];
    int level[MAX];
    int iter[MAX];
    
    void addedge(int a,int b,int c)
    {
        G[a].push_back((edge){b,c,G[b].size()});
        G[b].push_back((edge){a,0,G[a].size()-1});
    }
    
    void bfs(int s)
    {
        memset(level,-1,sizeof(level));
        queue<int> que;
        level[s]=0;
        que.push(s);
        while(!que.empty())
        {
         int v=que.front();que.pop();
         for(int i=0;i<G[v].size();i++)
         {
             edge &e=G[v][i];
             if(e.cap>0&&level[e.to]<0){
                level[e.to]=level[v]+1;
                que.push(e.to);
             }
         }
        }
    }
    
    int dfs(int v,int t,int f)
    {
        if(v==t) return f;
        for(int &i=iter[v];i<G[v].size();i++)
        {
            edge &e=G[v][i];
            if(e.cap>0&&level[v]<level[e.to]){
                int d=dfs(e.to,t,min(f,e.cap));
                if(d>0){
                    e.cap-=d;
                    G[e.to][e.rev].cap+=d;
                    return d;
                }
            }
        }
        return 0;
    }
    
    int max_flow(int s,int t)
    {
        int flow=0;
        for(;;){
            bfs(s);
            if(level[t]<0) return flow;
            memset(iter,0,sizeof(iter));
            int f;
            while((f=dfs(s,t,INF))>0){
                flow+=f;
            }
        }
    }
    
    int main()
    {
        int n,m;
        while(~scanf("%d%d",&m,&n)){
            for(int i=0;i<MAX;i++)
               while(!G[i].empty()) G[i].pop_back();
            int a,b,c;
            for(int i=0;i<m;i++)
            {
                scanf("%d%d%d",&a,&b,&c);
                addedge(a,b,c);
            }
            int ans=max_flow(1,n);
            printf("%d
    ",ans);
        }
        return 0;
    }
    
    
    
    
    </span>


     

  • 相关阅读:
    【转】技术人员,你拿什么来拯救你的生活一个牛人的故事
    正则表达式匹配Html标签
    WebClient读取网络数据
    [转]浮点数的存储格式
    [转].NET.GC 浅谈.net托管程序中的资源释放问题
    [转]c#利用WebClient和WebRequest获取网页源代码的比较
    bzoj1934
    1036: [ZJOI2008]树的统计Count (树链剖分模板)
    1834: [ZJOI2010]network 网络扩容 (最小费用最大流模板)
    1602: [Usaco2008 Oct]牧场行走(倍增模板)
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254437.html
Copyright © 2011-2022 走看看