zoukankan      html  css  js  c++  java
  • POJ 3304 计算几何

    Segments
    Time Limit: 1000MS  Memory Limit: 65536K
    Total Submissions: 9564  Accepted: 2943

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0
    Sample Output

    Yes!
    Yes!
    No!
    Source

    Amirkabir University of Technology Local Contest 2006

     

    <span style="color:#6600cc;">/**************************************
         author    : Grant Yuan
         time      : 2014/8/19 16:53
         algorithm : 计算几何
         source    : POJ 3304
    ***************************************/
    
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #define MAX 107
    #define eps 1e-8
    #include<cmath>
    
    using namespace std;
    
    struct Point
    {
        double x,y;
        Point(){}
        Point(double _x,double _y)
        {
            x=_x;
            y=_y;
        }
        Point operator -(const Point&b)
        {
            return Point(x-b.x,y-b.y);
        }
        double operator *(const Point&b)
        {
           return x*b.x+y*b.y;
        }
        double operator ^(const Point&b)
        {
            return x*b.y-y*b.x;
        }
        bool operator ==(const Point&b)
        {
            return(x==b.x&&y==b.y);
        }
    };
    
    struct Line
    {
        Point p1,p2;
        Line(){}
        Line(Point a,Point b){p1=a;p2=b;}
    };
    
    Point P[2*MAX];
    Line L[MAX];
    
    bool check(Point q0,Point q1,Point q2,Point q3)
    {
        if(fabs(q0.x-q1.x)<eps&&fabs(q0.y-q1.y)<eps)
            return false;
        int t1=0,t2=0;
        if(((q1-q0)^(q2-q0))<-eps) t1=-1;
        else if(((q1-q0)^(q2-q0))>eps) t1=1;
    
         if(((q1-q0)^(q3-q0))<-eps) t2=-1;
        else if(((q1-q0)^(q3-q0))>eps) t2=1;
        if(t1*t2==-1||t1==0||t2==0)
            return true;
        return false;
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--){
          int n;
          scanf("%d",&n);
          for(int i=0;i<2*n;i++)
          {
              scanf("%lf%lf",&P[i].x,&P[i].y);
          }
          if(n==1||n==2) printf("Yes!
    ");
          else{
          for(int i=0;i<2*n;i++)
          {
              if(i%2==0) L[i/2].p1=P[i];
              else L[i/2].p2=P[i];
          }
          Point q0,q1;
          bool ans=0;
          for(int i=0;i<2*n-1;i++)
          {
            q0=P[i];
            for(int j=i+1;j<2*n;j++)
            {
            if(P[j].x==q0.x&&P[j].y==q0.y) continue;
            q1=P[j];
            bool flag=1;
            for(int k=0;k<n;k++)
            {
                if(!check(q0,q1,L[k].p1,L[k].p2)){flag=0; break;}
            }
            if(flag) {ans=1;break;}
            }
            if(ans) break;
          }
           if(ans) printf("Yes!
    ");
          else printf("No!
    ");
        }}
        return 0;
    }
    </span>


     

  • 相关阅读:
    一个人的旅行 dij(),评测的时候有点惨
    CodeFroce Round 340 div2 E XOR and Favorite Number【莫队算法】
    [HihoCoder-1185] 连通性·三 【tarjan+缩点】
    2017百度之星初赛(A)1001,1005,1006解题报告
    HDU 5961&AOJ 821 传递
    pair
    优先队列 priority_queue
    ccf 201903-5
    memset 和 fill 的区别
    ccf 20190302
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254453.html
Copyright © 2011-2022 走看看