Digits of Factorial
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Submit
Status
Description
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Sample Output
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
<span style="color:#6600cc;">/**************************************** author : Grant Yuan time : 2014.8.5 algrithm : 数论 *****************************************/ #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; int n,t,m; double ans; double aa[1000007]; void add() { memset(aa,0,sizeof(aa)); for(int i=1;i<=1000007;i++) aa[i]=aa[i-1]+log10(i*1.0); } int main() { scanf("%d",&t); add(); for(int i=1;i<=t;i++) { scanf("%d%d",&n,&m); ans=aa[n]/log10(m*1.0)+1; printf("Case %d: %d ",i,(int)ans); } return 0; } </span>