zoukankan      html  css  js  c++  java
  • 【组队赛三】-D 优先队列 cf446B

    DZY Loves Modification
    Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
    Submit

    Status

    Practice

    CodeForces 446B
    Description
    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input
    The first line contains four space-separated integers n, m, k and p(1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output
    Output a single integer — the maximum possible total pleasure value DZY could get.

    Sample Input
    Input
    2 2 2 2
    1 3
    2 4
    Output
    11
    Input
    2 2 5 2
    1 3
    2 4
    Output
    11
    Hint
    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:


    1 1
    0 0

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:


    -3 -3
    -2 -2

    <span style="color:#3333ff;">/*
    _______________________________________________________________________________________
    
           author    :   Grant yuan
           time      :   2014.7.21
           algorithm :   priority_queue
           explain   :   首先对行和列在1到k的范围内分别求解,然后求出一个满足i和k-i的最大值,
                         注意最终的结果中减去重复计算的,还有会测试大于int类型的数据。 
    —————————————————————————————————————————————————————————————————————————————————————————
    */
        
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<functional>
    using namespace std;
    #define INF 999999999;
    
    priority_queue<__int64>q1;
    priority_queue<__int64>q2;
    __int64 m,n,k,p,h;
    __int64 a[1003][1003];
    __int64 s1[1003],s2[1003];
    __int64 sum1[1000003],sum2[1000003];
    __int64 res,ans,hh;
    
    int main()
    {
        cin>>n>>m>>k>>p;
        ans=INF;
        ans=-ans*ans;
        memset(s1,0,sizeof(s1));
        memset(s2,0,sizeof(s2));
        memset(sum1,0,sizeof(sum1));
        memset(sum2,0,sizeof(sum2));
        while(!q1.empty())
          q1.pop();
        while(!q2.empty())
           q2.pop();
    
        for(int i=0;i<n;i++)
          for(int j=0;j<m;j++){
            scanf("%I64d",&a[i][j]);
            s1[i]+=a[i][j];
            s2[j]+=a[i][j];}
    
        for(int i=0;i<n;i++)
          q1.push(s1[i]);
    
         for(int i=0;i<m;i++)
           q2.push(s2[i]);
    
        for(int i=1;i<=k;i++)
        {
            h=q1.top();q1.pop();
            if(i==1)sum1[i]=h;
            else sum1[i]=sum1[i-1]+h;
            h-=m*p;
            q1.push(h);
        }
         for(int i=1;i<=k;i++)
        {
            h=q2.top();q2.pop();
            if(i==1)sum2[i]=h;
            else sum2[i]=sum2[i-1]+h;
            h-=n*p;
            q2.push(h);
        }
    
        for(int i=0;i<=k;i++)
            {
                res=sum1[i]+sum2[k-i];
                ans=max(ans,res-i*p*(k-i));
            }
    
        cout<<ans<<endl;
        return 0;
    
    }
    </span>



  • 相关阅读:
    qcow2文件压缩
    raw格式镜像文件压缩并转换为qcow2格式
    centos7 install virt-sysprep
    镜像简介
    QEMU 使用的镜像文件:qcow2 与 raw
    ubuntu14.04中国源
    less css下载及编绎工具
    分布式计算中WebService的替代方案: RPC (XML-RPC | JSON-RPC)
    Asp.net WebServer
    C#取调用堆栈StackTrace
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254491.html
Copyright © 2011-2022 走看看