zoukankan      html  css  js  c++  java
  • 区间Dp 暴力枚举+动态规划 Hdu1081

    F - 最大子矩形
    Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u
    Submit

    Status
    Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:

    9 2
    -4 1
    -1 8
    and has a sum of 15.
    Input
    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
    Output
    Output the sum of the maximal sub-rectangle.
    Sample Input
    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4 1 -1

    8 0 -2
    Sample Output
    15

    <span style="color:#3333ff;">/*
    _________________________________________________________________________________________________________________
           author      :       Grant Yuan
           time        :       2014.7.19
           source      :       Hdu1081
           algorithm   :       暴力枚举+动态规划
           explain     :       暴力枚举第k1行到第k2行每一列各个元素的和sum[i],然后对sum[i]进行一次最大子序列求和
    ___________________________________________________________________________________________________________________
    */
    
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<functional>
    #include<algorithm>
    using namespace std;
    
    int a[105][105];
    int l;
    int sum[105];
    int dp[105];
    
    int main()
    {
    	while(~scanf("%d",&l)){
    		for(int i=0;i<l;i++)
    			for(int j=0;j<l;j++)
    			 scanf("%d",&a[i][j]);
    
    		int ans=-9999999,ans1;
    		for(int k1=0;k1<l;k1++)
    			for(int k2=0;k2<l;k2++){
    		   memset(dp,0,sizeof(dp));
    		   memset(sum,0,sizeof(sum));
    		 for(int i=0;i<l;i++){
    			for(int j=k1;j<=k2;j++)
    		     {
    			   sum[i]+=a[i][j];
    		         }
    		   for(int m=0;m<l;m++)
    		     {
    		   	  dp[m+1]=max(dp[m]+sum[m],sum[m]);
    		      }
    		   ans1=dp[1];
    		   for(int d=1;d<=l;d++)
    			  if(dp[d]>ans1)
    		ans1=dp[d];
    		if(ans1>ans)
    		      ans=ans1;}}
    
    		printf("%d
    ",ans);}
    
    }
    </span>

  • 相关阅读:
    计算机网络原理笔记 第一章 概述
    数据结构与算法入门C语言(三)线性结构-离散存储[链表]
    数据结构与算法入门C语言 (二) 线性结构-连续存储[线性表(数组)]
    数据结构与算法入门C语言 (一) 概述
    先画一个圈
    appium 简介和相关名称说明
    appium+python 自动化环境安装
    JDK 1.8 安装
    python安装
    python中的 join()函数
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254493.html
Copyright © 2011-2022 走看看