zoukankan      html  css  js  c++  java
  • C_Dp

    <span style="color:#000099;">/*
    C - 简单dp 例题
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u
    Submit
     
    Status
    Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    Input
    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
    Output
    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input
    abcfbc         abfcab
    programming    contest 
    abcd           mnp
    Sample Output
    4
    2
    0
    By Grant Yuan
    2014.7.16
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    using namespace std;
    char a[1000];
    char b[1000];
    int dp[1000][1000];
    int max(int aa,int bb)
    {
        return aa>=bb?aa:bb;
    }
    int main()
    {   int l1,l2;
        while(~scanf("%s%s",a,b)){
            l1=strlen(a);
            l2=strlen(b);
            memset(dp,0,sizeof(dp));
            for(int i=0;i<l1;i++)
              for(int j=0;j<l2;j++)
                {
                    if(a[i]==b[j])
                      dp[i+1][j+1]=dp[i][j]+1;
                    else
                      dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
                }
            cout<<dp[l1][l2]<<endl;
          }
          return 0;
    }
    </span>


  • 相关阅读:
    2015-05-28
    QQ项目随笔-15-05-19
    QQ聊天窗口布局笔记-15-05-17
    QQ聊天cell-15-05-16
    关于自定义cell——15-05-13
    关于MVC中德一些注意事项-15-05-11
    关于UITableView的若干方法-15-05-07
    UIAlertView(弹窗)的若干方法15-05-07
    •UIButton快捷获取属性值
    ES6(简)
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254509.html
Copyright © 2011-2022 走看看