zoukankan      html  css  js  c++  java
  • B二分

    <span style="color:#330099;">/*
    B - 二分 基础
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit
     
    Status
    Description
    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 
    
    His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?
    Input
    * Line 1: Two space-separated integers: N and C 
    
    * Lines 2..N+1: Line i+1 contains an integer stall location, xi
    Output
    * Line 1: One integer: the largest minimum distance
    Sample Input
    5 3
    1
    2
    8
    4
    9
    By Grant Yuan
    2014.7.15
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int a[100002];
    int n,c;
    int d;
    int l,r;
    int top;
    bool can(int k)
    {  //cout<<"k"<<k<<endl;
        int last,sum,sta;
        sta=0;
        sum=1;
        for(int i=1;i<n;i++)
          {
              if(a[i]-a[sta]>=k)
               {//cout<<" i"<<i<<" sta"<<sta<<endl;
                    sum++;
                   sta=i;
               }
          }
          //cout<<"sum"<<sum<<endl;
          if(sum>=c)
             return true;
         else
             return false;
    }
    
    int main()
    {   int i;
        int num;
        int last;
        while(~scanf("%d%d",&n,&c)){
       // cin>>n>>c;
        for(i=0;i<n;i++)
           cin>>a[i];
        //top=i;
        sort(a,a+n);
        l=a[0];r=a[n-1]+1;
        int mid;
        while(r-l>1){
            mid=(l+r)/2;
           if(can(mid)){
               l=mid;
               }
            else
            {
                 r=mid;
            }
      }
    cout<<l<<endl;
    
    }  }
    </span>

  • 相关阅读:
    各种筛法与莫比乌斯反演
    欧拉函数技巧与学习笔记
    莫比乌斯函数与欧拉函数的单个值的快速求法
    最短路算法总结
    NOI2018网络同步赛游记
    中国剩余定理及其扩展学习笔记
    构造方法的格式
    private关键字
    成员变量和局部变量的区别
    数据加密代码实现
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254516.html
Copyright © 2011-2022 走看看