zoukankan      html  css  js  c++  java
  • B二分

    <span style="color:#330099;">/*
    B - 二分 基础
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
    Submit
     
    Status
    Description
    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 
    
    His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?
    Input
    * Line 1: Two space-separated integers: N and C 
    
    * Lines 2..N+1: Line i+1 contains an integer stall location, xi
    Output
    * Line 1: One integer: the largest minimum distance
    Sample Input
    5 3
    1
    2
    8
    4
    9
    By Grant Yuan
    2014.7.15
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int a[100002];
    int n,c;
    int d;
    int l,r;
    int top;
    bool can(int k)
    {  //cout<<"k"<<k<<endl;
        int last,sum,sta;
        sta=0;
        sum=1;
        for(int i=1;i<n;i++)
          {
              if(a[i]-a[sta]>=k)
               {//cout<<" i"<<i<<" sta"<<sta<<endl;
                    sum++;
                   sta=i;
               }
          }
          //cout<<"sum"<<sum<<endl;
          if(sum>=c)
             return true;
         else
             return false;
    }
    
    int main()
    {   int i;
        int num;
        int last;
        while(~scanf("%d%d",&n,&c)){
       // cin>>n>>c;
        for(i=0;i<n;i++)
           cin>>a[i];
        //top=i;
        sort(a,a+n);
        l=a[0];r=a[n-1]+1;
        int mid;
        while(r-l>1){
            mid=(l+r)/2;
           if(can(mid)){
               l=mid;
               }
            else
            {
                 r=mid;
            }
      }
    cout<<l<<endl;
    
    }  }
    </span>

  • 相关阅读:
    本地启动项目后cookie跨域获取不到的处理方式
    相对URL:协议名跨域的一种处理方式
    window.open方法被浏览器拦截的处理方式
    高维前缀和
    比较函数大小
    链式前向星
    并查集
    Kruskal算法
    读书笔记 UltraGrid(4)
    读书笔记 UltraGrid(12)
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254516.html
Copyright © 2011-2022 走看看