Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 45290 | Accepted: 16440 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
Output
For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source
归并排序做法:
1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<cstring> 5 #include<algorithm> 6 #include<cstdlib> 7 #include<string> 8 using namespace std; 9 int num[ 500007],num1[500007],num2[5000007]; 10 int n; 11 long long ans=0; 12 void get(int left,int mid,int right) 13 { 14 for(int i=left;i<=right;i++) num1[i]=num[i]; 15 int sum=(mid-left)+1; 16 int i=left,j=mid+1,k=left; 17 while(i<=mid&&j<=right){ 18 if(num1[i]<=num1[j]){ 19 num[k++]=num1[i++]; 20 } 21 else 22 { 23 num[k++]=num1[j++]; 24 ans+=(mid-i+1); 25 } 26 } 27 while(i<=mid){num[k++]=num1[i++];} 28 while(j<=right){num[k++]=num1[j++];} 29 } 30 31 void merge1(int l,int r) 32 { 33 if(l<r){ 34 35 int m=(l+r)>>1; 36 merge1(l,m); 37 merge1(m+1,r); 38 get(l,m,r); 39 } 40 } 41 int main() 42 { 43 // freopen("in.txt","r",stdin); 44 while(1){ 45 scanf("%d",&n); 46 ans=0; 47 if(n==0) break; 48 for(int i=0;i<n;i++) 49 scanf("%d",&num[i]); 50 merge1(0,n-1); 51 printf("%I64d ",ans); 52 } 53 return 0; 54 }
树状数组做法:
1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cstdlib> 5 #include<cstring> 6 #include<algorithm> 7 #define MAX 500010 8 #define LL long long 9 using namespace std; 10 int num[MAX],tree[MAX]; 11 int n; 12 LL ans=0; 13 struct node 14 { 15 int value,sum; 16 }; 17 node arr[MAX]; 18 int lowbit(int value) 19 { 20 return value&(-value); 21 } 22 void build(int value) 23 { 24 while(value<=n){ 25 tree[value]+=1; 26 value+=lowbit(value); 27 } 28 } 29 int Get_sum(int value) 30 { 31 int result=0; 32 for(int i=value;i>=1;i-=lowbit(i)) 33 { 34 result+=tree[i]; 35 } 36 return result; 37 } 38 bool cmp(node n1,node n2) 39 { 40 return n1.value<n2.value; 41 } 42 int main() 43 { 44 //freopen("in.txt","r",stdin); 45 while(scanf("%d",&n)==1 && n) 46 { 47 ans=0; 48 memset(tree,0,sizeof(tree)); 49 for(int i=1;i<=n;i++) scanf("%d",&arr[i].value),arr[i].sum=i; 50 sort(arr+1,arr+n+1,cmp); 51 for(int i=1;i<=n;i++) 52 { 53 num[arr[i].sum]=i; 54 } 55 for(int i=1;i<=n;i++) 56 { 57 build(num[i]); 58 ans+=i-Get_sum(num[i]); 59 } 60 printf("%I64d ",ans); 61 } 62 return 0; 63 }