zoukankan      html  css  js  c++  java
  • Commonly Used Data Structures And Time Complexity

    Trie

    Time Complexity

    Insert/search O(l), l is the length of the word

    Space Complexity

    O(prefixes), O(n * l * l) n words with length l


    Binary Search Tree

    H is the height of the tree, if the tree is balanced, h = logn


    Data Structure

    get

    search

    insert

    delete

    Array

    O(1)

    O(n)

    O(n)

    O(n)

    ArrayList

    O(1)

    O(n)

    O(1)

    O(1)

    LinkedList

    O(n)

    O(n)

    O(1)

    O(1)

    Stack

    O(n)

    O(n)

    O(1)

    O(1)

    PriorityQueue

    O(logn)

    O(n)

    O(logn )

    O(n)

    HashMap

    O(1)

    O(1)

    O(1)

    O(1)

    TreeMap

    O(logn)

    O(n)

    O(logn)

    O(logn)

    HashSet

    O(1)

    O(1)

    O(1)

    O(1)

    Trie

    O(L)

    O(L)

    O(L)

    O(L)

    B Tree

    O(logn)

    O(logn)

    O(logn)

    O(logn)

    Binary Search Tree

    O(h)

    O(h)

    O(h)

    O(h)

     

    Master Theorem Cheatsheet

    EquationTimeSpaceExamples
    T(n) = 2*T(n/2) + O(n) O(nlogn) O(logn) quick_sort
    T(n) = 2*T(n/2) + O(n) O(nlogn) O(n + logn) merge_sort
    T(n) = T(n/2) + O(1) O(logn) O(logn) Binary search
    T(n) = 2*T(n/2) + O(1) O(n) O(logn) Binary tree traversal
    T(n) = T(n-1) + O(1) O(n) O(n) Binary tree traversal
    T(n) = T(n-1) + O(n) O(n^2) O(n) quick_sort(worst case)
    T(n) = n * T(n-1) O(n!) O(n) permutation
    T(n) = T(n-1)+T(n-2)+…+T(1) O(2^n) O(n) combination
        @Test
        public void testQueue() {
            Queue<String> queue = new LinkedList<>();
            queue.offer("a");
            queue.offer("b");
            System.out.println(queue.peek()); // a
            System.out.println(queue.poll()); // a
        }
    
        @Test
        public void testStack() {
            Stack<String> stack = new Stack<>();
            stack.push("a");
            stack.push("b");
            System.out.println(stack.peek()); // b
            System.out.println(stack.pop());  // b
        }
    
        @Test
        public void testDeque() {
            Deque<String> deque = new LinkedList<>();
            String[] array = {"1", "2", "3", "4"};
    
            // used as a stack
            for (String ele: array) {
                deque.push(ele);
            }
            System.out.println(deque.peekFirst()); // 4
            System.out.println(deque.peekLast());  // 1
            System.out.println(deque.pop());  // 4
            System.out.println(deque.removeFirst());  // 3
            System.out.println(deque.removeLast());  // 1
    
            deque.clear();
    
            // used as a queue
            for (String ele: array) {
                deque.offer(ele);
            }
            System.out.println(deque.peekFirst()); // 1
            System.out.println(deque.peekLast());  // 4
            System.out.println(deque.poll());  // 1
            System.out.println(deque.removeFirst());  // 2
            System.out.println(deque.removeLast());  // 4
        }
    
        @Test
        public void testPriorityQueue() {
            Integer[] array = {3, 1, 4, 2};
            // By default it is a min heap
            PriorityQueue<Integer> minHeap = new PriorityQueue<>();
            for (Integer ele: array) {
                minHeap.offer(ele);
            }
    
            System.out.println(minHeap.poll());  // 1
    
            // Create a max heap
            PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());
            // PriorityQueue<Integer> maxHeap = new PriorityQueue<>((x, y) -> y - x);
    
            for (Integer ele: array) {
                maxHeap.offer(ele);
            }
    
            System.out.println(maxHeap.poll());  // 4
        }
  • 相关阅读:
    c#发送邮件.net1.1和.net2.0中的两个方法
    六步使用ICallbackEventHandler实现无刷新回调
    报表项目总结
    转载:Tomcat Port 8009 与AJP13协议
    JUnit4 使用指南二 (熟练掌握)
    JUnit4 使用指南一 (简单上手)
    HP的项目中曾做一个业务日志系统
    Unitils使用(转载)
    iBatis 学习
    JUnit4 使用指南三 (Runner 特性分析)
  • 原文地址:https://www.cnblogs.com/codingforum/p/9990861.html
Copyright © 2011-2022 走看看