本课内容:
1、线性回归
2、梯度下降
3、正规方程组
监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案
1、线性回归
问题引入:假设有一房屋销售的数据如下:
引入通用符号:
m =训练样本数
x =输入变量(特征)
y =输出变量(目标变量)
(x,y)—一个样本
ith—第i个训练样本=(x(i),y(i))
监督学习过程:
1) 将训练样本提供给学习算法
2)
算法生成一个输出函数(一般用h表示,成为假设)
3)
这个函数接收输入,输出结果。(本例中为,接收房屋面积,输出房价)将x映射到y。
如下图所示:
求min(J(θ))的方法有:梯度下降法和正规方程组法
2、梯度下降(Gradient Descent)
梯度下降是一种搜索算法,基本思想:先给出参数向量一个初始值,比如0向量;不断改变,使得J(θ)不断缩小。
改变的方法:梯度下降
水平坐标轴表示θ0和θ1,垂直坐标表示J(θ)。
假设该三维图为一个三维地表,选择的初始向量的点位于一座“山”上。梯度下降的方法是,你环视一周,寻找下降最快的路径,即为梯度的方向,每次下降一小步,再环视四周,继续下降,以此类推。结果到达一个局部最小值,如下图:
当然,假若初始点选择不同,则结果可能为另一个完全不同的局部最小值,如下图所示:
每一次将θi减去θi对J(θ)求偏导的结果,即沿最陡峭的“山坡”下降
假设只有一个训练样本时,将偏导数展开:
代入上式有:
α:学习速度,即决定了你下山时每一步迈多大。设得过小,则收敛时间长,设得过大,可能会在迈步的时候越过最小值。
特别注意:θi必须同步更新,即若假设i=0和i=1;则更新时按如下步骤:
(1)批梯度下降算法:
上述为处理一个训练样本的公式,将其派生成包含m个训练样本的算法,循环下式直至收敛:
复杂度分析:
对于每个θi的每次迭代,即上式所示,时间为O(m)
每次迭代(走一步)需要计算n个特征的梯度值,复杂度为O(mn)
一般来说,这种二次函数的J(θ)的三维图形为一个碗状,有一个唯一的全局最小值。其等高线为一个套一个的椭圆形,运用梯度下降会快速收敛到圆心。
下图为使用梯度下降拟合的上例房屋大小和价格的曲线
检测是否收敛的方法:
1)检测两次迭代θi的改变量,若不再变化,则判定收敛
2)更常用的方法:检验J(θ),若不再变化,判定收敛
(2)随机梯度下降算法(增量梯度下降算法):
如此一来,对每个训练样本都更新一次θi,直至收敛,其速度快于批梯度下降法,因为批梯度下降法每一次更新θi都需要遍历所有样本。即批梯度下降中,走一步为考虑m个样本;随机梯度下降中,走一步只考虑1个样本。
每次迭代复杂度为O(n)。当m个样本用完时,继续循环到第1个样本。
上述使用了迭代的方法求最小值,实际上对于这类特定的最小二乘回归问题,或者普通最小二乘问题,存在其他方法给出最小值,接下来这种方法可以给出参数向量的解析表达式,如此一来就不需要迭代求解了。
3、正规方程组(Normal Equations)
假设我们有m个样本。特征向量的维度为n。因此,可知样本为{(x(1),y(1)), (x(2),y(2)),... ..., (x(m),y(m))},其中对于每一个样本中的x(i),都有x(i)={x1(i), xn(i),... ...,xn(i)}。令 H(θ)=θ0 + θ1x1 +θ2x2 +... + θnxn,则有
若希望H(θ)=Y,则有X · θ = Y
我们先来回忆一下两个概念:单位矩阵 和 矩阵的逆,看看它们有什么性质。
(1)单位矩阵E
AE=EA=A
(2)矩阵的逆A-1
要求:A必须为方阵
性质:AA-1=A-1A=E
再来看看式子 X · θ = Y ;若想求出θ,那么我们需要做一些转换:
step1:先把θ左边的矩阵变成一个方阵。通过乘以XT可以实现,则有
XTX · θ = XTY
step2:把θ左边的部分变成一个单位矩阵,这样就可以让它消失于无形了……
(XTX)-1(XTX) · θ = (XTX)-1XTY
step3:由于(XTX)-1(XTX)=E,因此式子变为
Eθ = (XTX)-1XTY
E可以去掉,因此得到
θ = (XTX)-1XTY
这就是我们所说的Normal Equation了。
Normal Equation VS
Gradient Descent
Normal
Equation 跟 Gradient Descent一样,可以用来求权重向量θ。但它与Gradient
Descent相比,既有优势也有劣势。
优势:
Normal
Equation可以不在意X特征的规模大小。比如,有特征向量X={x1, x2},
其中x1的range为1~2000,而x2的range为1~4,可以看到它们的范围相差了500倍。如果使用Gradient
Descent方法的话,会导致椭圆变得很窄很长,而出现梯度下降困难,甚至无法下降梯度(因为导数乘上步长后可能会冲出椭圆的外面)。但是,如果用Normal
Equation方法的话,就不用担心这个问题了。因为它是纯粹的矩阵算法。
劣势:
相比于Gradient Descent,Normal
Equation需要大量的矩阵运算,特别是求矩阵的逆。在矩阵很大的情况下,会大大增加计算复杂性以及对计算机内存容量的要求。
学习Regression问题避免不了梯度问题。之前对梯度概念一直模糊,找了好多博文来读,总算也一知半解。
我对梯度下降法的简单理解
(1)为什么在多元函数自变量的研究中引入方向?
在自变量为一维的情况下,也就是自变量可以视为一个标量,此时,一个实数就可以代表它了,这个时候,如果要改变自变量的值,则其要么减小,要么增加,也就是“非左即右“。所以,说到“
自变量在某个方向上移动 ”这个概念的时候,它并不是十分明显;
而在自变量为n(n≥2)维的情况下,这个概念就有用了起来:假设自变量X为3维的,即每一个X是(x1,
x2,
x3)这样的一个点,其中x1,x2和x3分别是一个实数,即标量。那么,如果要改变X,即将一个点移动到另一个点,你怎么移动?可以选择的方法太多了,例如,我们可以令x1,x2不变,仅使x3改变,也可以令x1,x3不变,仅使x2改变,等等。这些做法也就使得我们有了”
方向
“的概念,因为在3维空间中,一个点移动到另一个点,并不是像一维情况下那样“非左即右”的,而是有“方向”的。在这样的情况下,找到一个合适的”方向“,使得从一个点移动到另一个点的时候,函数值的改变最符合我们预定的要求(例如,函数值要减小到什么程度),就变得十分有必要了。
(2)为什么沿梯度的反方向函数值下降最快?
将目标函数f(x)在点xk处泰勒展开:
Xk:代表第k个点的自变量(一个向量)。
d:单位方向(一个向量),即|d|=1。
α:步长(一个实数)。
o(α):α的高阶无穷小。
这个数学表达式是用泰勒公式展开得到的,样子有点难看,所以对比一下自变量为一维的情况下的泰勒展开式
在[1]式中高阶无穷小可以忽略,因此,要使[1]式取到最小值,
一个多元函数的梯度方向是该函数值增加最陡的方向。具体到一元函数中时,梯度方向首先是沿着曲线的切线,然后取切线向上增长的方向为梯度方向。如下图所示。
THE END!