zoukankan      html  css  js  c++  java
  • 国密SM4对称算法实现说明(原SMS4无线局域网算法标准)

    国密SM4对称算法实现说明(原SMS4无线局域网算法标准)

      SM4分组密码算法,原名SMS4,国家密码管理局于2012年3月21日发布:http://www.oscca.gov.cn/News/201204/News_1228.htm ,但不能下载标准文档。

      SM4为对称算法,密钥长度和分组长度均为128位。按原SMS4的标准描述:加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

      该算法网上的C语言实现如下:

      sm4.h

     1 /**
     2 * file sm4.h
     3 */
     4 #ifndef XYSSL_SM4_H
     5 #define XYSSL_SM4_H
     6 
     7 #define SM4_ENCRYPT     1
     8 #define SM4_DECRYPT     0
     9 
    10 /**
    11 * rief          SM4 context structure
    12 */
    13 typedef struct
    14 {
    15     int mode;                   /*!<  encrypt/decrypt   */
    16     unsigned long sk[32];       /*!<  SM4 subkeys       */
    17 }
    18 sm4_context;
    19 
    20 
    21 #ifdef __cplusplus
    22 extern "C" {
    23 #endif
    24 
    25     /**
    26     * rief          SM4 key schedule (128-bit, encryption)
    27     *
    28     * param ctx      SM4 context to be initialized
    29     * param key      16-byte secret key
    30     */
    31     void sm4_setkey_enc(sm4_context *ctx, unsigned char key[16]);
    32 
    33     /**
    34     * rief          SM4 key schedule (128-bit, decryption)
    35     *
    36     * param ctx      SM4 context to be initialized
    37     * param key      16-byte secret key
    38     */
    39     void sm4_setkey_dec(sm4_context *ctx, unsigned char key[16]);
    40 
    41     /**
    42     * rief          SM4-ECB block encryption/decryption
    43     * param ctx      SM4 context
    44     * param mode     SM4_ENCRYPT or SM4_DECRYPT
    45     * param length   length of the input data
    46     * param input    input block
    47     * param output   output block
    48     */
    49     void sm4_crypt_ecb(sm4_context *ctx,
    50         int mode,
    51         int length,
    52         unsigned char *input,
    53         unsigned char *output);
    54 
    55     /**
    56     * rief          SM4-CBC buffer encryption/decryption
    57     * param ctx      SM4 context
    58     * param mode     SM4_ENCRYPT or SM4_DECRYPT
    59     * param length   length of the input data
    60     * param iv       initialization vector (updated after use)
    61     * param input    buffer holding the input data
    62     * param output   buffer holding the output data
    63     */
    64     void sm4_crypt_cbc(sm4_context *ctx,
    65         int mode,
    66         int length,
    67         unsigned char iv[16],
    68         unsigned char *input,
    69         unsigned char *output);
    70 
    71 #ifdef __cplusplus
    72 }
    73 #endif
    74 
    75 #endif /* sm4.h */

      sm4.c

      1 #include "sm4.h"
      2 #include <string.h>
      3 #include <stdio.h>
      4 
      5 /*
      6 * 32-bit integer manipulation macros (big endian)
      7 */
      8 #ifndef GET_ULONG_BE
      9 #define GET_ULONG_BE(n,b,i)                             
     10 {                                                       
     11     (n) = ((unsigned long)(b)[(i)] << 24)        
     12     | ((unsigned long)(b)[(i)+1] << 16)        
     13     | ((unsigned long)(b)[(i)+2] << 8)        
     14     | ((unsigned long)(b)[(i)+3]);       
     15 }
     16 #endif
     17 
     18 #ifndef PUT_ULONG_BE
     19 #define PUT_ULONG_BE(n,b,i)                             
     20 {                                                       
     21     (b)[(i)] = (unsigned char)((n) >> 24);       
     22     (b)[(i)+1] = (unsigned char)((n) >> 16);       
     23     (b)[(i)+2] = (unsigned char)((n) >> 8);       
     24     (b)[(i)+3] = (unsigned char)((n));       
     25 }
     26 #endif
     27 
     28 /*
     29 *rotate shift left marco definition
     30 *
     31 */
     32 #define  SHL(x,n) (((x) & 0xFFFFFFFF) << n)
     33 #define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n)))
     34 
     35 #define SWAP(a,b) { unsigned long t = a; a = b; b = t; t = 0; }
     36 
     37 /*
     38 * Expanded SM4 S-boxes
     39 /* Sbox table: 8bits input convert to 8 bits output*/
     40 
     41 static const unsigned char SboxTable[16][16] =
     42 {
     43     { 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05 },
     44     { 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99 },
     45     { 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62 },
     46     { 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6 },
     47     { 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8 },
     48     { 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35 },
     49     { 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87 },
     50     { 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e },
     51     { 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1 },
     52     { 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3 },
     53     { 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f },
     54     { 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51 },
     55     { 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8 },
     56     { 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0 },
     57     { 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84 },
     58     { 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 }
     59 };
     60 
     61 /* System parameter */
     62 static const unsigned long FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc };
     63 
     64 /* fixed parameter */
     65 static const unsigned long CK[32] =
     66 {
     67     0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
     68     0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
     69     0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
     70     0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
     71     0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
     72     0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
     73     0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
     74     0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
     75 };
     76 
     77 
     78 /*
     79 * private function:
     80 * look up in SboxTable and get the related value.
     81 * args:    [in] inch: 0x00~0xFF (8 bits unsigned value).
     82 */
     83 static unsigned char sm4Sbox(unsigned char inch)
     84 {
     85     unsigned char *pTable = (unsigned char *)SboxTable;
     86     unsigned char retVal = (unsigned char)(pTable[inch]);
     87     return retVal;
     88 }
     89 
     90 /*
     91 * private F(Lt) function:
     92 * "T algorithm" == "L algorithm" + "t algorithm".
     93 * args:    [in] a: a is a 32 bits unsigned value;
     94 * return: c: c is calculated with line algorithm "L" and nonline algorithm "t"
     95 */
     96 static unsigned long sm4Lt(unsigned long ka)
     97 {
     98     unsigned long bb = 0;
     99     unsigned long c = 0;
    100     unsigned char a[4];
    101     unsigned char b[4];
    102     PUT_ULONG_BE(ka, a, 0)
    103         b[0] = sm4Sbox(a[0]);
    104     b[1] = sm4Sbox(a[1]);
    105     b[2] = sm4Sbox(a[2]);
    106     b[3] = sm4Sbox(a[3]);
    107     GET_ULONG_BE(bb, b, 0)
    108         c = bb ^ (ROTL(bb, 2)) ^ (ROTL(bb, 10)) ^ (ROTL(bb, 18)) ^ (ROTL(bb, 24));
    109     return c;
    110 }
    111 
    112 /*
    113 * private F function:
    114 * Calculating and getting encryption/decryption contents.
    115 * args:    [in] x0: original contents;
    116 * args:    [in] x1: original contents;
    117 * args:    [in] x2: original contents;
    118 * args:    [in] x3: original contents;
    119 * args:    [in] rk: encryption/decryption key;
    120 * return the contents of encryption/decryption contents.
    121 */
    122 static unsigned long sm4F(unsigned long x0, unsigned long x1, unsigned long x2, unsigned long x3, unsigned long rk)
    123 {
    124     return (x0^sm4Lt(x1^x2^x3^rk));
    125 }
    126 
    127 
    128 /* private function:
    129 * Calculating round encryption key.
    130 * args:    [in] a: a is a 32 bits unsigned value;
    131 * return: sk[i]: i{0,1,2,3,...31}.
    132 */
    133 static unsigned long sm4CalciRK(unsigned long ka)
    134 {
    135     unsigned long bb = 0;
    136     unsigned long rk = 0;
    137     unsigned char a[4];
    138     unsigned char b[4];
    139     PUT_ULONG_BE(ka, a, 0)
    140         b[0] = sm4Sbox(a[0]);
    141     b[1] = sm4Sbox(a[1]);
    142     b[2] = sm4Sbox(a[2]);
    143     b[3] = sm4Sbox(a[3]);
    144     GET_ULONG_BE(bb, b, 0)
    145         rk = bb ^ (ROTL(bb, 13)) ^ (ROTL(bb, 23));
    146     return rk;
    147 }
    148 
    149 static void sm4_setkey(unsigned long SK[32], unsigned char key[16])
    150 {
    151     unsigned long MK[4];
    152     unsigned long k[36];
    153     unsigned long i = 0;
    154 
    155     GET_ULONG_BE(MK[0], key, 0);
    156     GET_ULONG_BE(MK[1], key, 4);
    157     GET_ULONG_BE(MK[2], key, 8);
    158     GET_ULONG_BE(MK[3], key, 12);
    159     k[0] = MK[0] ^ FK[0];
    160     k[1] = MK[1] ^ FK[1];
    161     k[2] = MK[2] ^ FK[2];
    162     k[3] = MK[3] ^ FK[3];
    163     for (; i<32; i++)
    164     {
    165         k[i + 4] = k[i] ^ (sm4CalciRK(k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ CK[i]));
    166         SK[i] = k[i + 4];
    167     }
    168 
    169 }
    170 
    171 /*
    172 * SM4 standard one round processing
    173 *
    174 */
    175 static void sm4_one_round(unsigned long sk[32],
    176     unsigned char input[16],
    177     unsigned char output[16])
    178 {
    179     unsigned long i = 0;
    180     unsigned long ulbuf[36];
    181 
    182     memset(ulbuf, 0, sizeof(ulbuf));
    183     GET_ULONG_BE(ulbuf[0], input, 0)
    184         GET_ULONG_BE(ulbuf[1], input, 4)
    185         GET_ULONG_BE(ulbuf[2], input, 8)
    186         GET_ULONG_BE(ulbuf[3], input, 12)
    187     while (i<32)
    188     {
    189         ulbuf[i + 4] = sm4F(ulbuf[i], ulbuf[i + 1], ulbuf[i + 2], ulbuf[i + 3], sk[i]);
    190         // #ifdef _DEBUG
    191         //            printf("rk(%02d) = 0x%08x,  X(%02d) = 0x%08x 
    ",i,sk[i], i, ulbuf[i+4] );
    192         // #endif
    193         i++;
    194     }
    195     PUT_ULONG_BE(ulbuf[35], output, 0);
    196     PUT_ULONG_BE(ulbuf[34], output, 4);
    197     PUT_ULONG_BE(ulbuf[33], output, 8);
    198     PUT_ULONG_BE(ulbuf[32], output, 12);
    199 }
    200 
    201 /*
    202 * SM4 key schedule (128-bit, encryption)
    203 */
    204 void sm4_setkey_enc(sm4_context *ctx, unsigned char key[16])
    205 {
    206     ctx->mode = SM4_ENCRYPT;
    207     sm4_setkey(ctx->sk, key);
    208 }
    209 
    210 /*
    211 * SM4 key schedule (128-bit, decryption)
    212 */
    213 void sm4_setkey_dec(sm4_context *ctx, unsigned char key[16])
    214 {
    215     int i;
    216     ctx->mode = SM4_ENCRYPT;
    217     sm4_setkey(ctx->sk, key);
    218     for (i = 0; i < 16; i++)
    219     {
    220         SWAP(ctx->sk[i], ctx->sk[31 - i]);
    221     }
    222 }
    223 
    224 
    225 /*
    226 * SM4-ECB block encryption/decryption
    227 */
    228 
    229 void sm4_crypt_ecb(sm4_context *ctx,
    230     int mode,
    231     int length,
    232     unsigned char *input,
    233     unsigned char *output)
    234 {
    235     while (length > 0)
    236     {
    237         sm4_one_round(ctx->sk, input, output);
    238         input += 16;
    239         output += 16;
    240         length -= 16;
    241     }
    242 
    243 }
    244 
    245 /*
    246 * SM4-CBC buffer encryption/decryption
    247 */
    248 void sm4_crypt_cbc(sm4_context *ctx,
    249     int mode,
    250     int length,
    251     unsigned char iv[16],
    252     unsigned char *input,
    253     unsigned char *output)
    254 {
    255     int i;
    256     unsigned char temp[16];
    257 
    258     if (mode == SM4_ENCRYPT)
    259     {
    260         while (length > 0)
    261         {
    262             for (i = 0; i < 16; i++)
    263                 output[i] = (unsigned char)(input[i] ^ iv[i]);
    264 
    265             sm4_one_round(ctx->sk, output, output);
    266             memcpy(iv, output, 16);
    267 
    268             input += 16;
    269             output += 16;
    270             length -= 16;
    271         }
    272     }
    273     else /* SM4_DECRYPT */
    274     {
    275         while (length > 0)
    276         {
    277             memcpy(temp, input, 16);
    278             sm4_one_round(ctx->sk, input, output);
    279 
    280             for (i = 0; i < 16; i++)
    281                 output[i] = (unsigned char)(output[i] ^ iv[i]);
    282 
    283             memcpy(iv, temp, 16);
    284 
    285             input += 16;
    286             output += 16;
    287             length -= 16;
    288         }
    289     }
    290 }

      sm4test.c

    /*
    * SM4/SMS4 algorithm test programme
    */
    
    #include <string.h>
    #include <stdio.h>
    #include "sm4.h"
    
    int main()
    {
        unsigned char key[16] = { 0xc5, 0x01, 0xcb, 0xe8, 0xa8, 0x49, 0xb3, 0xe7, 0xf6, 0x38, 0xe7, 0xe0, 0x96, 0xe5, 0x60, 0xef };
        unsigned char input[16] = { 0x87, 0xca, 0xa0, 0x4a, 0x4b, 0xa7, 0x62, 0x92, 0x50, 0xfb, 0xbe, 0x07, 0x5b, 0xd3, 0x00, 0x01 };
    
        unsigned char output[16];
        sm4_context ctx;
        unsigned long i;
    
        //encrypt standard testing vector
            //数据加密,output为加密后的数据
        sm4_setkey_enc(&ctx, key);
        sm4_crypt_ecb(&ctx, 1, 16, input, output);
        for (i = 0; i<16; i++)
            printf("%02x ", output[i]); //输出
        printf("
    ");
    
        //decrypt testing
            //数据解密
        sm4_setkey_dec(&ctx, key);
        sm4_crypt_ecb(&ctx, 0, 16, output, output);
        for (i = 0; i<16; i++)
            printf("%02x ", output[i]);
        printf("
    ");
        return 0;
    }    

      

  • 相关阅读:
    mysql索引类型 normal, unique, full text
    16.信号量互斥编程
    15.信号通信编程
    14.有名管道通信
    13.无名管道通讯编程
    12.多进程程序的操作
    11.进程控制理论
    10.时间编程
    9. 库函数方式文件编程
    8.Linux文件编程
  • 原文地址:https://www.cnblogs.com/codingmengmeng/p/5476260.html
Copyright © 2011-2022 走看看