zoukankan      html  css  js  c++  java
  • [LeetCode] Search for a Range 解题报告


    Given a sorted array of integers, find the starting and ending position of a given target value.
    Your algorithm's runtime complexity must be in the order of O(log n).
    If the target is not found in the array, return [-1, -1].
    For example,
    Given [5, 7, 7, 8, 8, 10] and target value 8,
    return [3, 4].
    » Solve this problem


    [解题思路]
    首先二分,然后根据二分的坐标分别往前和往后找找即可。

    [Code]
    1:       vector<int> searchRange(int A[], int n, int target) {  
    2: // Start typing your C/C++ solution below
    3: // DO NOT write int main() function
    4: vector<int> range;
    5: int index = searchTarget(A, 0, n-1, target);
    6: if(index == -1)
    7: {
    8: range.push_back(-1);
    9: range.push_back(-1);
    10: }
    11: else
    12: {
    13: int is = index;
    14: while(is>0 && A[is-1] == A[index]) is--;
    15: int ie = index;
    16: while(ie<n-1 && A[ie+1] == A[index]) ie++;
    17: range.push_back(is);
    18: range.push_back(ie);
    19: }
    20: return range;
    21: }
    22: int searchTarget(int A[], int start, int end, int target)
    23: {
    24: if(start > end) return -1;
    25: int mid = (start+end)/2;
    26: if(A[mid] == target) return mid;
    27: if(A[mid]<target)
    28: return searchTarget(A, mid+1, end, target);
    29: else
    30: return searchTarget(A, start, mid-1, target);
    31: }


    [Note]
    1. Line 6
    错误的写成,"if(index = -1)", 少了个=号,结果老是输出[-1,-1].


    Update: 07/15/2013 Refactor the code
    看了一下评论,Jarvis很关注最差时间复杂度。其实从题目上来说,它更关注是平均复杂度。上面的算法在最差情况下复杂度是O(n),但是平均复杂度是O(lgn)。
    如果想实现最差复杂度也是O(lgn),也很简单,做两次二分就可以了,第一次二分找出最左边的边界,第二次二分找出最右边的边界,这样,无论平均还是最差都是O(lgn)。

    实现如下:
    1:    vector<int> searchRange(int A[], int n, int target) {  
    2: vector<int> result;
    3: result.push_back(-1);
    4: result.push_back(-1);
    5: // find the low bound of the range, O(lgn)
    6: int start =0, end =n-1;
    7: while(start < end)
    8: {
    9: int mid = (start + end)/2;
    10: if(A[mid] < target)
    11: {
    12: start = mid + 1;
    13: continue;
    14: }
    15: end = mid;
    16: }
    17: int low_bound = A[start] == target? start:-1;
    18: if(low_bound == -1)
    19: {
    20: return result;
    21: }
    22: // find the high bound of the range, O(lgn)
    23: start =low_bound, end =n;
    24: while(start < end)
    25: {
    26: int mid = (start + end)/2;
    27: if(A[mid] > target)
    28: {
    29: end = mid;
    30: continue;
    31: }
    32: start = mid+1;
    33: }
    34: int high_bound = start-1;
    35: result.clear();
    36: result.push_back(low_bound);
    37: result.push_back(high_bound);
    38: return result;
    39: }




  • 相关阅读:
    随机数 | @counter-style.range (Counter Styles)
    长度 | <length> (Values & Units)
    重复线性渐变 | repeating-linear-gradient (Image Values)
    重复径向渐变 | repeating-radial-gradient() (Image Values)
    重复 | repeat (Grid Layout)
    逻辑属性 | CSS Logical Properties (Logical Properties)
    通用选择器 | Universal selectors (Selectors)
    ProxySQL Admin管理接口
    《【Graph Embedding】LINE:算法原理,实现和应用》
    《AutoInt:基于Multi-Head Self-Attention构造高阶特征》
  • 原文地址:https://www.cnblogs.com/codingtmd/p/5078958.html
Copyright © 2011-2022 走看看