zoukankan      html  css  js  c++  java
  • LeetCode之链表

    2. Add Two Numbers

    You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

    Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
    Output: 7 -> 0 -> 8

    暴力解法:


    解题思路:

    1.其中一个链表为空的情况;

    2.链表长度相同时,且最后一个节点相加有进位的情况;

    3.链表长度不等,短链表最后一位有进位的情况,且进位后长链表也有进位的情况;

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
            if(l1==null){
                return l2;
            }
            if(l2==null){
                return l1;
            }
            int len1 = getLength(l1);
            int len2 = getLength(l2);
            ListNode head = null;
            ListNode plus = null;
            if(len1>=len2){
                head = l1;
                plus = l2;
            }else{
                head = l2;
                plus = l1;
            }
            ListNode p = head;
            int carry = 0;
            int sum = 0;
            while(plus!=null){
                sum = p.val + plus.val+carry;
                carry = sum/10;
                p.val = sum%10;
                if(p.next==null&&carry!=0){
                    ListNode node = new ListNode(carry);
                    p.next = node;
                    carry = 0;
                }
                p = p.next;
                plus = plus.next;
            }
            while(p!=null&&carry!=0){
                sum = p.val+carry;
                carry = sum/10;
                p.val = sum%10;
                if(p.next==null&&carry!=0){
                    ListNode node = new ListNode(carry);
                    p.next = node;
                    carry=0;
                }
                p = p.next;
            }
            return head;
        }
        
        public int getLength(ListNode l){
            if(l==null){
                return 0;
            }
            int len = 0;
            while(l!=null){
                ++len;
                l = l.next;
            }
            return len;
        }
    }

     递归解法:


    复杂度

    时间O(n) 空间(n) 递归栈空间

    思路

    从末尾到首位,对每一位对齐相加即可。技巧在于如何处理不同长度的数字,以及进位和最高位的判断。这里对于不同长度的数字,我们通过将较短的数字补0来保证每一位都能相加。递归写法的思路比较直接,即判断该轮递归中两个ListNode是否为null。

    • 全部为null时,返回进位值
    • 有一个为null时,返回不为null的那个ListNode和进位相加的值
    • 都不为null时,返回 两个ListNode和进位相加的值
    public class Solution {
        public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
            return helper(l1,l2,0);
        }
    
        public ListNode helper(ListNode l1, ListNode l2, int carry){
            if(l1==null && l2==null){
                return carry == 0? null : new ListNode(carry);
            }
            if(l1==null && l2!=null){
                l1 = new ListNode(0);
            }
            if(l2==null && l1!=null){
                l2 = new ListNode(0);
            }
            int sum = l1.val + l2.val + carry;
            ListNode curr = new ListNode(sum % 10);
            curr.next = helper(l1.next, l2.next, sum / 10);
            return curr;
        }
    }

    迭代法:


    复杂度

    时间O(n) 空间(1)

    思路

    迭代写法相比之下更为晦涩,因为需要处理的分支较多,边界条件的组合比较复杂。过程同样是对齐相加,不足位补0。迭代终止条件是两个ListNode都为null。

    注意

    • 迭代方法操作链表的时候要记得手动更新链表的指针到next
    • 迭代方法操作链表时可以使用一个dummy的头指针简化操作
    • 不可以在其中一个链表结束后直接将另一个链表串接至结果中,因为可能产生连锁进位
    public class Solution {
        public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
            ListNode dummyHead = new ListNode(0);
            if(l1 == null && l2 == null){
                return dummyHead;
            }
            int sum = 0, carry = 0;
            ListNode curr = dummyHead;
            while(l1!=null || l2!=null){
                int num1 = l1 == null? 0 : l1.val;
                int num2 = l2 == null? 0 : l2.val;
                sum = num1 + num2 + carry;
                curr.next = new ListNode(sum % 10);
                curr = curr.next;
                carry = sum / 10;
                l1 = l1 == null? null : l1.next;
                l2 = l2 == null? null : l2.next;
            }
            if(carry!=0){
                curr.next = new ListNode(carry);
            }
            return dummyHead.next;
        }
    }

    21. Merge Two Sorted Lists

    Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.

    思路1:1)考虑特殊情况,两个链表至少有一个为空;

         2)考虑两个链表长度不一样的情况;

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
            
            if(l1==null)
                return l2;
            if(l2==null)
                return l1;
            
            ListNode head;
            if(l1.val<=l2.val){
                head = new ListNode(l1.val);
                l1 = l1.next;
            }else{
                head = new ListNode(l2.val);
                l2 = l2.next;
            }
            ListNode node = head;
            while(l1!=null&&l2!=null){
                if(l1.val<=l2.val){
                    node.next = l1;
                    node = node.next;
                    l1 = l1.next;
                }else{
                    node.next = l2;
                    node = node.next;
                    l2 = l2.next;
                }
            }
            if(l1!=null){
                node.next = l1;
            }
            if(l2!=null){
                node.next = l2;
            }
            return head;
        }
    }

    206. Reverse Linked List

    Reverse a singly linked list.

     思路:1)首先判断头节点是否为空,为空则直接返回;

      2)

    public class Solution {
        public ListNode reverseList(ListNode head) {
            if(head==null)
                return null;
            ListNode newHead = new ListNode(head.val);
            ListNode p = head.next;
            while(p!=null){
                ListNode node = new ListNode(p.val);
                node.next = newHead;
                p = p.next;
                newHead = node;
            }
            
            return newHead;
        }
    }
    sort-list

    Sort a linked list in O(n log n) time using constant space complexity.

     思路:要求时间复杂度为O(nlogn),空间复杂度为O(1);

      1.考虑使用归并排序;

      2.归并排序需要找到中点,考虑使用快慢指针;

      3.归并中排序;

    /**
     * Definition for singly-linked list.
     * class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) {
     *         val = x;
     *         next = null;
     *     }
     * }
     */
    public class Solution {
        public ListNode sortList(ListNode head) {
            if(head==null||head.next==null)
                return head;
            ListNode mid = getMid(head);
            ListNode right = sortList(mid.next);
            mid.next = null;
            ListNode left = sortList(head);
            return mergeList(left,right);
        }
        public ListNode getMid(ListNode head){
            ListNode slow = head;
            ListNode fast = head.next;
            while(fast!=null&&fast.next!=null){
                slow = slow.next;
                fast = fast.next.next;
            }
            return slow; 
        }
        
        public ListNode mergeList(ListNode left,ListNode right){
            if(left==null)
                return right;
            if(right==null)
                return left;
            ListNode head = null;
            if(left.val<=right.val){
                head = left;
                left = left.next;
            }else{
                head = right;
                right = right.next;
            }
            ListNode node = head;
            while(left!=null&&right!=null){
                if(left.val<=right.val){
                    node.next = left;
                    left = left.next;
                }else{
                    node.next = right;
                    right = right.next;
                }
                node = node.next;
            }
            if(left!=null){
                node.next = left;
            }
            if(right!=null){
                node.next = right;
            }
            return head;
        }
    }
    insertion-sort-list

    Sort a linked list using insertion sort.

    使用插入的方式对链表进行排序:

    插入排序的思路如下:当前数与其前面的有序数依次进行比较,找到适当的位置插入,以此类推,得到最终结果;

    此题的思路是:

      1)如果head为空或者head.next为空,则直接返回head;

      2)使用一个节点cur遍历当前待排序的节点,利用另一个节点pre从头开始遍历,若pre的值<=cur的值且两者不同,pre=pre.next;否则,记录第一个>cur的节点及其值,再遍历此节点到cur节点,调整节点值得位置,将cur的值交换到第一个>cur的节点处,直到链表遍历完;

    /**
     * Definition for singly-linked list.
     * public class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) {
     *         val = x;
     *         next = null;
     *     }
     * }
     */
    public class Solution {
        public ListNode insertionSortList(ListNode head) {
            if(head==null||head.next==null){
                return head;
            }
            ListNode cur = head;
            while(cur!=null){
                ListNode pre = head;
                while(pre.val<=cur.val&&pre!=cur){
                    pre = pre.next;
                }
                int firstVal = pre.val;
                ListNode mark = pre;
                while(pre!=cur){
                    int nextVal = pre.next.val;
                    int tmp = nextVal;
                    pre.next.val = firstVal;
                    firstVal = tmp;
                    pre = pre.next;
                }
                mark.val = firstVal;
                cur = cur.next;
            }
            return head;
        }
    }
     
    reorder-list
    Given a singly linked list LL0→L1→…→Ln-1→Ln,

    reorder it to: L0→LnL1→Ln-1→L2→Ln-2→…

    You must do this in-place without altering the nodes' values.

    For example,
    Given{1,2,3,4}, reorder it to{1,4,2,3}.

    解题思路:

      先使用快慢指针找到链表的中点,反转后半部分的链表,再以中点为断点进行前后两部分交叉合并;

    /**
     * Definition for singly-linked list.
     * class ListNode {
     *     int val;
     *     ListNode next;
     *     ListNode(int x) {
     *         val = x;
     *         next = null;
     *     }
     * }
     */
    public class Solution {
        public void reorderList(ListNode head) {
            if(head==null||head.next==null)
                return;
            ListNode fast = head.next;
            ListNode slow = head;
            while(fast!=null&&fast.next!=null){
                slow = slow.next;
                fast = fast.next.next;
            }
            ListNode pre = reverseList(slow.next);
            slow.next = pre;
            ListNode p = head;
            ListNode q = slow.next;
            while(q!=null&&p!=null){
                slow.next = q.next;
                q.next = p.next;
                p.next = q;
                p = q.next;
                q = slow.next;
            }
        }
      //反转单链表
    public ListNode reverseList(ListNode head){ if(head==null||head.next==null) return head; ListNode cur = head.next; ListNode pre = head; while(cur!=null){ ListNode node = cur.next; cur.next = pre; pre = cur; cur = node; } head.next = cur; return pre; } }
  • 相关阅读:
    BZOJ.1028.[JSOI2007]麻将(贪心)
    BZOJ.1024.[SCOI2009]生日快乐(记忆化搜索)
    BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)
    BZOJ.1026.[SCOI2009]windy数(数位DP)
    BZOJ.2125.最短路(仙人掌 最短路Dijkstra)
    BZOJ.1021.[SHOI2008]循环的债务(DP)
    BZOJ.1019.[SHOI2008]汉诺塔(递推)
    POJ.1379.Run Away(模拟退火)
    BZOJ.3680.吊打XXX(模拟退火/爬山算法)
    BZOJ.1018.[SHOI2008]堵塞的交通(线段树维护连通性)
  • 原文地址:https://www.cnblogs.com/coffy/p/5731230.html
Copyright © 2011-2022 走看看