zoukankan      html  css  js  c++  java
  • openMP + cuda 实现多GPU编程

    #include <omp.h>
    #include <stdio.h>      // stdio functions are used since C++ streams aren't necessarily thread safe
     
     
    // a simple kernel that simply increments each array element by b
    __global__ void kernelAddConstant(int *g_a, const int b)
    {
        int idx = blockIdx.x * blockDim.x + threadIdx.x;
        g_a[idx] += b;
    }
     
    // a predicate that checks whether each array elemen is set to its index plus b
    int correctResult(int *data, const int n, const int b)
    {
            for(int i = 0; i < n; i++)
                    if(data[i] != i + b)
                            return 0;
            return 1;
    }
     
    int main(int argc, char *argv[])
    {
            int num_gpus = 0;       // number of CUDA GPUs
     
            /////////////////////////////////////////////////////////////////
            // determine the number of CUDA capable GPUs
            //
        cudaGetDeviceCount(&num_gpus);
            if(num_gpus < 1)
            {
                    printf("no CUDA capable devices were detected
    ");
                    return 1;
            }
     
            /////////////////////////////////////////////////////////////////
            // display CPU and GPU configuration
            //
        printf("number of host CPUs:	%d
    ", omp_get_num_procs());
        printf("number of CUDA devices:	%d
    ", num_gpus);
        for(int i = 0; i < num_gpus; i++)
        {
            cudaDeviceProp dprop;
            cudaGetDeviceProperties(&dprop, i);
                    printf("   %d: %s
    ", i, dprop.name);
        }
            printf("---------------------------
    ");
     
     
        /////////////////////////////////////////////////////////////////
        // initialize data
            //
        unsigned int n = num_gpus * 8192;
        unsigned int nbytes = n * sizeof(int);
            int *a = 0;             // pointer to data on the CPU
            int b = 3;              // value by which the array is incremented
            a = (int*)malloc(nbytes);
            if(0 == a)
            {
                    printf("couldn't allocate CPU memory
    ");
                    return 1;
            }
            for(unsigned int i = 0; i < n; i++)
            a[i] = i;
         
     
        ////////////////////////////////////////////////////////////////
            // run as many CPU threads as there are CUDA devices
            //   each CPU thread controls a different device, processing its
            //   portion of the data.  It's possible to use more CPU threads
            //   than there are CUDA devices, in which case several CPU
            //   threads will be allocating resources and launching kernels
            //   on the same device.  For example, try omp_set_num_threads(2*num_gpus);
            //   Recall that all variables declared inside an "omp parallel" scope are
            //   local to each CPU thread
            //
            omp_set_num_threads(num_gpus);  // create as many CPU threads as there are CUDA devices
        //omp_set_num_threads(2*num_gpus);// create twice as many CPU threads as there are CUDA devices
    #pragma omp parallel
        {
            unsigned int cpu_thread_id = omp_get_thread_num();
                    unsigned int num_cpu_threads = omp_get_num_threads();
     
                    // set and check the CUDA device for this CPU thread
                    int gpu_id = -1;
                    cudaSetDevice(cpu_thread_id % num_gpus);        // "% num_gpus" allows more CPU threads than GPU devices
                    cudaGetDevice(&gpu_id);
     
                    printf("CPU thread %d (of %d) uses CUDA device %d
    ", cpu_thread_id, num_cpu_threads, gpu_id);
     
                    int *d_a = 0;   // pointer to memory on the device associated with this CPU thread
                    int *sub_a = a + cpu_thread_id * n / num_cpu_threads;   // pointer to this CPU thread's portion of data
                    unsigned int nbytes_per_kernel = nbytes / num_cpu_threads;
                    dim3 gpu_threads(128);  // 128 threads per block
                    dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads));
     
              cudaMalloc((void**)&d_a, nbytes_per_kernel);
              cudaMemset(d_a, 0, nbytes_per_kernel);
              cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice);
            kernelAddConstant<<<gpu_blocks, gpu_threads>>>(d_a, b);
     
              cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost);
              cudaFree(d_a);
     
     
        }
            printf("---------------------------
    ");
     
            if(cudaSuccess != cudaGetLastError())
                    printf("%s
    ", cudaGetErrorString(cudaGetLastError()));
     
     
            ////////////////////////////////////////////////////////////////
            // check the result
            //
        if(correctResult(a, n, b))
            printf("Test PASSED
    ");
        else
            printf("Test FAILED
    ");
     
        free(a);    // free CPU memory
     
        cudaThreadExit();
     
        return 0;
    }
  • 相关阅读:
    雷少东_百度百科
    180China丨the Agency for Brand Engagement and Experience
    建立可信连接
    【行业干货】2013中国零售商排名
    30万左右买什么车好?_百度知道
    极速入职-拉勾网-专注互联网职业机会
    python
    关于幂律分布的一个笔记_哈克_新浪博客
    幂律分布_百度百科
    使用firefox直接 打开pdf文件可以破解禁止打印的功能
  • 原文地址:https://www.cnblogs.com/cofludy/p/8608676.html
Copyright © 2011-2022 走看看