zoukankan      html  css  js  c++  java
  • 题解 SP22343 【NORMA2

    UPD:2020.7.20 修复了一些锅

    题目链接

    神题,莫名其妙WA了可以尝试多多取模(窝加一个%分数就涨10多分,醉了)

    Soltuion Norma

    题目大意:求

    [sum_{i=1}^{n}sum_{j=i}^{n}(j-i+1) cdot min[j,i] cdot max[j,i] ]

    (cdq)分治


    分析:

    求树上所有点对我们有点分治,求所有子序列我们也可以考虑(cdq)分治

    设当前统计([l,r]),中点(mid),我们要统计跨(mid)的子序列对答案的贡献

    不难想到,我们用一个指针(i in[l,mid])逆序枚举,这样我们可以在(O(n))的时间内统计出序列在(mid)左端部分的最小/大值

    然后我们看([i,mid])这段对右边的影响,我们设右端第一个小于(mi)的位置为(p),第一个大于(mx)的位置为(q)([i,mid])这段最小/大值为(mi/mx)

    分类讨论,不妨设(p < q),另一种情况同理

    • (1.)右端点(j in (mid,p))

    对答案的贡献

    (mi cdot mx cdot sum_{j=mid+1}^{p-1}(j-i+1))

    显然左边一个常数,右边等差数列求和(高斯笑而不语)

    • (2.)右端点(j in [p,q))

    对答案的贡献

    (mx cdot sum_{j=p}^{q-1}min[j] cdot(j-i+1))

    其中(min[j])表示([mid + 1,j])中最小值,(max[j])同理

    这玩意儿不好算拆开来

    (mx cdot (sum_{j=p}^{q-1}(min[j] cdot j - min[j] cdot i + min[j])))

    我们维护一下(min[j],min[j] cdot j)的前缀和即可

    • (3.)右端点(jin[q,r])

    对答案贡献

    (sum_{j=q}^{r}min[j] cdot max[j] cdot (j - i + 1))

    拆拆拆

    (sum_{j=q}^{r}(min[j] cdot max[j] cdot j - min[j] cdot max[j] cdot i + min[j] cdot max[j]))

    同理,维护(min[j]cdot max[j],min[j] cdot max[j] cdot j)前缀和

    (p > q)同理

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    const int maxn = 5e5 + 100,mod = 1e9;
    typedef long long ll;
    inline int read(){
    	int x = 0;char c = getchar();
    	while(!isdigit(c))c = getchar();
    	while(isdigit(c))x = x * 10 + c - '0',c = getchar();
    	return x; 
    }
    int n,val[maxn],mi,mx;
    ll ans,smi[maxn],smii[maxn],smx[maxn],smxi[maxn],smix[maxn],smixi[maxn],p,q;
    inline ll gauss(int l,int r){
    	return ll(l + r) * (r - l + 1) / 2 % mod;
    }
    inline ll getsum(ll *val,int l,int r){return (val[r] - val[l - 1]) % mod;}
    inline void cdq(int l,int r){
    	if(l == r){(ans += (ll)val[l] * val[l]) %= mod;return;}
    	int mid = (l + r) >> 1;
    	cdq(l,mid),cdq(mid + 1,r);
    	smi[mid] = smii[mid] = smx[mid] = smxi[mid] = smix[mid] = smixi[mid] = 0;
    	mi = 0x7fffffff,mx = -0x7fffffff;
    	for(int i = mid + 1;i <= r;i++){
    		mi = min(mi,val[i]);
    		mx = max(mx,val[i]);
    		smi[i] = (smi[i - 1] + mi) % mod;
    		smii[i] = (smii[i - 1] + (ll)mi * i % mod) % mod;
    		smx[i] = (smx[i - 1] + mx) % mod;
    		smxi[i] = (smxi[i - 1] + (ll)mx * i % mod) % mod;
    		smix[i] = (smix[i - 1] + (ll)mi * mx % mod) % mod;
    		smixi[i] = (smixi[i - 1] + (ll)mi * mx % mod * i % mod) % mod;
    	}
    	mi = 0x7fffffff,mx = -0x7fffffff,p = q = mid + 1;
    	for(int i = mid;i >= l;i--){
    		mi = min(mi,val[i]);
    		mx = max(mx,val[i]);
    		while(p <= r && val[p] > mi)p++;
    		while(q <= r && val[q] < mx)q++;
    		if(p < q){
    			(ans += (ll)mx * mi % mod * gauss(mid - i + 2,p - i)) %= mod;
    			(ans += mx * (getsum(smii,p,q - 1) - (i * getsum(smi,p,q - 1) % mod) + getsum(smi,p,q - 1) + mod) % mod) %= mod;
    			(ans += (getsum(smixi,q,r) - (i * getsum(smix,q,r) % mod) + getsum(smix,q,r)) % mod + mod) %= mod;
    		}else{
    			(ans += (ll)mx * mi % mod * gauss(mid - i + 2,q - i)) %= mod;
    			(ans += mi * (getsum(smxi,q,p - 1) - (i * getsum(smx,q,p - 1) % mod) + getsum(smx,q,p - 1) + mod) % mod) %= mod;
    			(ans += (getsum(smixi,p,r) - (i * getsum(smix,p,r) % mod) + getsum(smix,p,r)) % mod + mod) %= mod;
    		}
    	}
    }
    int main(){
    	n = read();
    	for(int i = 1;i <= n;i++)val[i] = read();
    	cdq(1,n);
    	printf("%lld
    ",ans);
    	return 0;
    }
    
  • 相关阅读:
    vux 局部注册组件
    vux 全局注册组件
    axios请求本地json
    vux报错 this指针问题
    Vue如何引入远程JS文件
    报错 ERROR in static/js/vendor.b3f56e9e0cd56988d890.js from UglifyJs
    封装axios
    js判断手机型号
    js判断是否在微信浏览器打开
    nginx+tomcat实现负载均衡以及session共享(linux centos7环境)
  • 原文地址:https://www.cnblogs.com/colazcy/p/11767769.html
Copyright © 2011-2022 走看看