zoukankan      html  css  js  c++  java
  • Comet OJ

    传送门.

    题解:

    考虑若最后的总伤害数是s,那么就挡板分配一下,方案数是(C_{s-1}^{n-1})

    那么问题在于总伤害数很大,不能一个一个的算。

    (C_{s-1}^{n-1})的OGF是({x^{n-1}over (1-x)^n})

    (F=FA+R->F={R over 1-A})

    得到递推式(A=1-(1-x)^n),前面的项可以用组合数算出。

    那么每次就是常系数齐次递推,每次搞的时候取模就好了。

    复杂度是(O(log^2))

    题解给出了更加巧妙的方法,我们不直接求(s)伤害的方案数。

    考虑(f(x))表示任意伤害下, 分配给x个人的方案数。

    当合并(f、g)两堆伤害时时,由于中间可以攃挡板,可以不插,所以就是(f*g*(1+x))

    用NTT卷积,每次算完后只用保留前n项。

    直接套快速幂是(O(log^2))的,但是可以用exp优化。

    初值利用这个式子就好了(sum_{i=y}^xC_{i}^y=C_{x+1}^{y+1})

    直到现在我才意识到杨辉三角的一条对角线和一列的求法是一样的,由于翻转一下就好了。

    Code:

    #include<bits/stdc++.h>
    #define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
    #define ff(i, x, y) for(int i = x, B = y; i <  B; i ++)
    #define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
    #define ll long long
    #define pp printf
    #define hh pp("
    ")
    using namespace std;
    
    const int mo = 998244353;
    
    ll ksm(ll x, ll y) {
    	ll s = 1;
    	for(; y; y /= 2, x = x * x % mo)
    		if(y & 1) s = s * x % mo;
    	return s;
    }
    
    typedef vector<ll> V;
    #define pb push_back
    #define si size()
    #define re resize
    
    namespace ntt {
    	const int nm = 262144;
    	ll w[nm], a[nm], b[nm]; int r[nm];
        void build() {
    		for(int i = 1; i < nm; i *= 2) {
    			w[i] = 1;
    			ll v = ksm(3, (mo - 1) / 2 / i);
    			ff(j, 1, i) w[i + j] = w[i + j - 1] * v % mo;
    		}
        }
        void dft(ll *a, int n, int f) {
    		ff(i, 0, n) {
    			r[i] = r[i / 2] / 2 + (i & 1) * (n / 2);
    			if(i < r[i]) swap(a[i], a[r[i]]);
    		} ll b;
    		for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i) ff(k, 0, i)
    			b = a[i + j + k] * w[i + k], a[i + j + k] = (a[j + k] - b) % mo, a[j + k] = (a[j + k] + b) % mo;
    		if(f == -1) {
    			reverse(a + 1, a + n);
    			b = ksm(n, mo - 2);
    			ff(i, 0, n) a[i] = (a[i] + mo) * b % mo;
    		}
        }
    	V operator * (V p, V q) {
    		int n0 = p.si + q.si - 1, n = 1;
    		while(n < n0) n *= 2;
    		ff(i, 0, n) a[i] = b[i] = 0;
    		ff(i, 0, p.si) a[i] = p[i];
    		ff(i, 0, q.si) b[i] = q[i];
    		dft(a, n, 1); dft(b, n, 1);
    		ff(i, 0, n) a[i] = a[i] * b[i] % mo;
    		dft(a, n, -1);
    		p.re(n0);
    		ff(i, 0, n0) p[i] = a[i];
    		return p;
    	}
    	void dft(V &p, int f) {
    		int n = p.si;
    		ff(i, 0, n) a[i] = p[i];
    		dft(a, n, f);
    		ff(i, 0, n) p[i] = a[i];
    	}
    }
    
    using ntt :: operator *;
    using ntt :: dft;
    
    V qni(V a) {
    	V b; b.re(1); b[0] = ksm(a[0], mo - 2);
    	for(int n = 2; n < a.si * 2; n *= 2) {
    		V c = a; c.re(n); c.re(2 * n); dft(c, 1);
    		b.re(2 * n); dft(b, 1);
    		ff(i, 0, 2 * n) b[i] = (2 * b[i] - c[i] * b[i] % mo * b[i]) % mo;
    		dft(b, -1); b.re(n);
    	}
    	b.re(a.si); return b;
    }
    
    V qd(V a) {
    	fo(i, 0, a.si - 2) a[i] = a[i + 1] * (i + 1) % mo;
    	a.re(a.si - 1);
    	return a;
    }
    V jf(V a) {
    	a.re(a.si + 1);
    	fd(i, a.si - 1, 1) a[i] = a[i - 1] * ksm(i, mo - 2) % mo;
    	a[0] = 0;
    	return a;
    }
     
    V ln(V a) {
    	int n = a.si;
    	a = jf(qd(a) * qni(a));
    	a.re(n); 
    	return a;
    }
    
    V exp(V a) {
    	V b; b.re(1); b[0] = 1;
    	for(int n = 1; n < a.si * 2; n *= 2) {
    		b.re(n);
    		V c = a; c.re(n);
    		V d = ln(b);
    		ff(i, 0, n) d[i] -= c[i];
    		d = d * b;
    		ff(i, 0, n) b[i] = (b[i] - d[i] + mo) % mo;
    	}
    	b.re(a.si); return b;
    }
    
    const int N = 1e5 + 5;
    
    int n, m, a[N], b[N];
    ll fac[N], nf[N];
    
    void build(int n) {
    	fac[0] = 1;
    	fo(i, 1, n) fac[i] = fac[i - 1] * i % mo;
    	nf[n] = ksm(fac[n], mo - 2);
    	fd(i, n, 1) nf[i - 1] = nf[i] * i % mo;
    }
    
    V p;
    
    V mul(V a, V b) {
    	a = a * b;
    	a.re(m);
    	fd(i, m - 1, 1) a[i] = (a[i] + a[i - 1]) % mo;
    	return a;
    }
    
    V c;
    
    V ksm(V x, int y) {
    	if(y == 1) return x;
    	ll xc = x[0]; ll nc = ksm(xc, mo - 2);
    	ff(i, 0, m) x[i] = x[i] * nc % mo;
    	x = ln(x);
    	ff(i, 0, m) x[i] = x[i] * y % mo;
       	x = exp(x);
    	xc = ksm(xc, y);
    	ff(i, 0, m) x[i] = x[i] * xc % mo;
    	V d = c;
    	ff(i, 0, m) d[i] = d[i] * (y - 1) % mo;
    	d = exp(d);
    	x = x * d; x.re(m);
    	return x;
    }
    
    V operator + (V a, V b) {
    	if(a.si < b.si) a.re(b.si);
    	ff(i, 0, b.si) a[i] = (a[i] + b[i]) % mo;
    	return a;
    }
    
    V ans;
    
    int main() {
    	ntt :: build();
    	build(1e5);
    	scanf("%d %d", &m, &n);
    	c.re(2); c[0] = 1; c[1] = 1;
    	c.re(m); c = ln(c);
    	fo(i, 1, n) scanf("%d %d", &a[i], &b[i]);
    	fo(i, 1, n) {
    		p.clear(); p.re(m);
    		ll f = 1;
    		fo(j, 1, min(b[i], m)) {
    			f = f * (b[i] - j + 1) % mo;
    			p[j - 1] = f * nf[j] % mo;
    		}
    		p = ksm(p, a[i]);
    		if(i == 1) ans = p; else ans = mul(ans, p);
    	}
    	ll as = (ans[m - 1] % mo + mo ) % mo;
    	pp("%lld
    ", as);
    }
    
    
    
  • 相关阅读:
    Linux-命令-parted
    Linux-磁盘
    Linux-bash需要转意的字符
    Linux-命令-su-sudo-visudo
    Linux-命令-用户登录及日志查询
    Linux-练习-批量创建用户5密码长度
    250W电源带i7+GTX1080?
    ICMP type code 对应表(转)
    U盘FAT32转换NTFS格式
    Maxdos 9.3不能引导系统进入Maxdos
  • 原文地址:https://www.cnblogs.com/coldchair/p/11587807.html
Copyright © 2011-2022 走看看