zoukankan      html  css  js  c++  java
  • 牛客挑战赛37 F 牛牛喜欢看小姐姐(容斥+高位前缀和)

    https://ac.nowcoder.com/acm/contest/4381/F

    先把(a[i])变成(gcd(a[i],m)),这样能到的就是a[i]的倍数。

    应该第一眼想到容斥的,直接推系数太难了。

    考虑容斥为至少s个,答案=至少s个-至少s+1个。

    也就是选s个a[i]的lcm的倍数集合并起来的大小。

    集合并可以用容斥搞成集合交。

    一共有C(n,s)个lcm的倍数集合,选i个出来,取交,也就是所有lcm的lcm,容斥系数是((-1)^{i-1})

    不管怎样,lcm都是m的约数,所以枚举一个y|m作为最后的lcm。

    (f[y])为选若干个lcm的倍数集合,这些lcm的lcm=y的容斥系数和。

    (g[y])表示这些lcm的lcm|y的容斥系数和。

    (g)(f)高维前缀和,(f)显然就是(g)的高维差分。

    考虑求(g[y]) ,设(c=sum[a[i]|y])(g[y]=sum_{i=1}^{C(c,s)}C(C(c,s),i)*(-1)^{i-1}=[C(c,s)>=1]=[c>=s])

    (c)显然也可以高维前缀和求。

    (Ans(至少s个)=sum_{d>=1~and~d|m}f[d]*(k/d)+[s<=n])

    Code:

    #include<bits/stdc++.h>
    #define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
    #define ff(i, x, y) for(int i = x, _b = y; i <  _b; i ++)
    #define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
    #define ll long long
    #define pp printf
    #define hh pp("
    ")
    using namespace std;
    
    const int N = 2e5 + 5;
    
    ll n, m, k, s;
    ll a[N];
    
    ll gcd(ll x, ll y) {
    	return !y ? x : gcd(y, x % y);
    }
    
    ll mul(ll x, ll y, ll mo) {
    	x %= mo, y %= mo;
    	ll z = (long double) x * y / mo;
    	z = x * y - z * mo;
    	if(z < 0) z += mo; else if(z >= mo) z -= mo;
    	return z;
    }
    
    ll ksm(ll x, ll y, ll mo) {
    	ll s = 1;
    	for(; y; y /= 2, x = mul(x, x, mo))
    		if(y & 1) s = mul(s, x, mo);
    	return s;
    }
    
    int pd_p(ll n) {
    	if(n == 2) return 1;
    	if(n % 2 == 0) return 0;
    	ll s = n - 1, c = 0; while(s % 2 == 0) s /= 2, c ++;
    	fo(ii, 1, 40) {
    		ll x = ksm(rand() % (n - 1) + 1, s, n);
    		fo(i, 1, c) {
    			ll y = mul(x, x, n);
    			if(y == 1 && x != 1 && x != n - 1) return 0;
    			x = y;
    		}
    		if(x != 1) return 0;
    	}
    	return 1;
    }
    
    ll find(ll n) {
    	ll x = rand() % (n - 1) + 1, c = rand() % n, y = x;
    	ll i = 1, k = 2;
    	while(1) {
    		x = (mul(x, x, n) + c) % n;
    		ll d = gcd(n, abs(y - x));
    		if(d != 1 && d != n) return d;
    		if(x == y) return 1;
    		if((++ i) == k) y = x, k *= 2;
    	}
    }
    
    ll u[100], v[100], u0;
    
    void fen(ll n) {
    	if(n == 1) return;
    	if(pd_p(n)) { u[++ u0] = n; return;}
    	ll d = find(n);
    	fen(d); fen(n / d);
    }
    
    void px() {
    	sort(u + 1, u + u0 + 1);
    	int U = u0; u0 = 0;
    	fo(i, 1, U) if(!u0 || u[i] != u[u0])
    		u[++ u0] = u[i], v[u0] = 1; else v[u0] ++;
    }
    
    ll d[200005]; int d0;
    void dg(int x, ll y) {
    	if(x > u0) {
    		d[++ d0] = y;
    		return;
    	}
    	fo(i, 0, v[x]) {
    		dg(x + 1, y);
    		if(i < v[x]) y *= u[x];
    	}
    }
    
    const int M = 1960817;
    ll h[M]; int h2[M];
    int ha(ll n) {
    	int y = n % M;
    	while(h[y] != 0 && h[y] != n)
    		y = (y + 1) % M;
    	return y;
    }
    void add(ll n, int x) {
    	int y = ha(n);
    	h[y] = n; h2[y] = x;
    }
    int qu(ll n) {
    	return h2[ha(n)];
    }
    
    ll f[N], g[N];
    
    #define ul unsigned long long
    
    ul calc(ll s) {
    	ul ans = (s <= n ? 1 : 0);
    	fo(i, 1, d0) g[qu(d[i])] = (f[qu(d[i])] >= s);
    	fo(i, 1, u0) {
    		fd(j, d0, 1) if(d[j] % u[i] == 0)
    			g[qu(d[j])] -= g[qu(d[j] / u[i])];
    	}
    	fo(i, 1, d0) ans += (ul) g[qu(d[i])] * (k / d[i]);
    	return ans;
    }
    
    int main() {
    	srand(19260817);
    	scanf("%lld %lld %lld %lld", &n, &m, &k, &s);
    	fo(i, 1, n) scanf("%lld", &a[i]), a[i] = gcd(a[i], m);
    	if(m == 1) {
    		pp("%d
    ", s == n ? n : 0);
    		return 0;
    	}
    	u0 = 0; fen(m); px();
    	dg(1, 1);
    	sort(d + 1, d + d0 + 1);
    	fo(i, 1, d0) add(d[i], i);
    	fo(i, 1, n) f[qu(a[i])] ++;
    	fo(i, 1, u0) {
    		fo(j, 1, d0) if(d[j] % u[i] == 0)
    			f[qu(d[j])] += f[qu(d[j] / u[i])];
    	}
    	pp("%llu
    ", calc(s) - calc(s + 1));
    }
    
    
  • 相关阅读:
    [HDU6793] Tokitsukaze and Colorful Tree
    [NOI2020]命运
    [NOI2020]美食家
    模拟9
    晚测2
    模拟8
    联考4
    模拟7
    模拟6
    关于数论
  • 原文地址:https://www.cnblogs.com/coldchair/p/12354343.html
Copyright © 2011-2022 走看看