zoukankan      html  css  js  c++  java
  • 「BJOI2018」链上二次求和(线段树)

    https://loj.ac/problem/2513

    清真化简题

    不妨考虑枚举每一个元素统计它出现的系数*它的权值。

    (a[x])(a[n-x+1])的出现次数是一样的,因此整个序列只剩下了一半。

    先考虑(a[x](xle (n+1)/2))在长度(y)会出现多少次。

    经过讨论,发现是(min(x,y,n-y+1))

    那么假设(yle (n+1)/2),大于的部分是一样的。

    最后就是要求这样一个东西((r<=(n+1)/2))
    (sum_{i=1}^{(n+1)/2} a[i]*sum_{j=1}^{r} min(i,j))

    拆一下式子,发现维护(a[i]*i^{0..2})的区间和就好了。

    Code:

    #include<bits/stdc++.h>
    #define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
    #define ff(i, x, y) for(int i = x, _b = y; i <  _b; i ++)
    #define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
    #define ll long long
    #define pp printf
    #define hh pp("
    ")
    using namespace std;
    
    const int mo = 1e9 + 7;
    
    ll ksm(ll x, ll y) {
    	ll s = 1;
    	for(; y; y /= 2, x = x * x % mo)
    		if(y & 1) s = s * x % mo;
    	return s;
    }
    
    const ll ni2 = ksm(2, mo - 2);
    
    const int N = 2e5 + 5;
    
    int n, m, n0, op, x, y, z;
    
    #define i0 i + i
    #define i1 i + i + 1 
    ll g[N * 4][3], t[N * 4][3], lz[N * 4];
    
    void bt(int i, int x, int y) {
    	if(x == y) {
    		g[i][0] = 1;
    		g[i][1] = x;
    		g[i][2] = (ll) x * x % mo;
    		return;
    	}
    	int m = x + y >> 1;
    	bt(i0, x, m); bt(i1, m + 1, y);
    	fo(j, 0, 2) g[i][j] = (g[i0][j] + g[i1][j]) % mo;
    }
    int pl, pr, px;
    void jia(int i, int px) {
    	fo(j, 0, 2) t[i][j] = (t[i][j] + g[i][j] * px) % mo;
    	lz[i] = (lz[i] + px) % mo;
    }
    void down(int i) {
    	if(lz[i]) jia(i0, lz[i]), jia(i1, lz[i]), lz[i] = 0;
    }
    void add(int i, int x, int y) {
    	if(y < pl || x > pr) return;
    	if(x >= pl && y <= pr) {
    		jia(i, px);
    		return;
    	}
    	int m = x + y >> 1; down(i);
    	add(i0, x, m); add(i1, m + 1, y);
    	fo(j, 0, 2) t[i][j] = (t[i0][j] + t[i1][j]) % mo;
    }
    ll py[3];
    void ft(int i, int x, int y) {
    	if(y < pl || x > pr) return;
    	if(x >= pl && y <= pr) {
    		fo(j, 0, 2) py[j] = (py[j] + t[i][j]) % mo;
    		return;
    	}
    	int m = x + y >> 1; down(i);
    	ft(i0, x, m); ft(i1, m + 1, y);
    }
    
    void xiu(int x, int y, int z) {
    	if(x <= n0) {
    		pl = x, pr = min(y, n0), px = z;
    		add(1, 1, n0);
    	}
    	if(y > n0) {
    		pl = n - y + 1, pr = n - max(x, n0 + 1) + 1; px = z;
    		add(1, 1, n0);
    	}
    }
    
    ll calc(int r) {
    	ll ans = 0;
    	
    	pl = 1, pr = r; fo(j, 0, 2) py[j] = 0;
    	ft(1, 1, n0);
    	ans = (ans + (py[2] + py[1]) * ni2 % mo - py[2] + py[1] * r + mo) % mo;
    	
    	pl = r + 1, pr = n0; fo(j, 0, 2) py[j] = 0;
    	ft(1, 1, n0);
    	ans = (ans + py[0] * ((ll) r * (r + 1) / 2 % mo)) % mo;
    	
    	return ans;
    }
    
    ll qry(int r) {
    	if(r <= n0) return calc(r);
    	return (calc(n0) + (n % 2 == 1 ? calc(n0 - 1) : calc(n0)) - calc(n - r) + mo) % mo;
    }
    
    int main() {
    	scanf("%d %d", &n, &m);
    	n0 = (n + 1) / 2;
    	bt(1, 1, n0);
    	fo(i, 1, n) {
    		scanf("%d", &x);
    		xiu(i, i, x);
    	}
    	fo(ii, 1, m) {
    		scanf("%d %d %d", &op, &x, &y);
    		if(op == 1) {
    			scanf("%d", &z);
    			if(x > y) swap(x, y);
    			xiu(x, y, z);
    		} else {
    			ll s = (qry(y) - qry(x - 1) + mo) % mo;
    			pp("%lld
    ", s);
    		}
    	}
    }
    
  • 相关阅读:
    NOIP提高组2004 合并果子题解
    RMQ问题之ST算法
    7.18考试
    7.18
    7.17
    7.16
    7.15
    7.14
    7.13考试
    7.13
  • 原文地址:https://www.cnblogs.com/coldchair/p/12699032.html
Copyright © 2011-2022 走看看