zoukankan      html  css  js  c++  java
  • Latex 第二个程序

    学会了插入图片和目录及目录嵌套。现在美观多了。

      1 \documentclass[12pt]{article} %12号
      2 \usepackage[timestamp,first]{draftcopy}
      3 \draftcopyVersion{ Version 2.0 }
      4 \usepackage{CJK} %使用支持汉字的CJK包
      5 \begin{CJK*}{GBK}{song} %开始CJK环境,只有在这句话之后,你才能使用汉字 宋体
      6 \title{\textbf{PID 控制笔记}} %这是文章的标题
      7 \author{connor zhang}%这是文章的作者
      8 \date{}%不想显示日期这样写
      9 \usepackage{graphicx}
     10 \begin{document}
     11 \setlength{\parindent}{2em}   %首行缩进2 字符
     12 \setlength{\textwidth}{12.5cm}%设置行宽
     13 \setlength{\parskip}{1ex plus0.5ex minus0.2ex}%设置段间距 后面为橡皮长度,所谓橡皮长度,就是可以可伸缩的长度  语法:正常值 plus伸展值 minus收缩值 有一个特殊的长度\fill 其正常长度为0,但可伸长到任何值
     14 \pagenumbering{arabic}      %用阿拉伯数字设置页码(作用全局)
     15 
     16 %\today % 显示当前日期
     17 \maketitle %先插入标题
     18 \tableofcontents %再插入目录
     19 \begin{eqnarray}
     20   \nonumber
     21   \nonumber
     22 \end{eqnarray}
     23 \begin{center}
     24 参数整定找最佳,从小到大顺序查。
     25 
     26 先是比例后积分,最后再把微分加。
     27 
     28 曲线振荡很频繁,比例度盘要放大。
     29 
     30 曲线漂浮绕大湾,比例度盘往小扳。
     31 
     32 曲线偏离回复慢,积分时间往下降。
     33 
     34 曲线波动周期长,积分时间再加长。
     35 
     36 曲线振荡频率快,先把微分降下来。
     37 
     38 动差大来波动慢,微分时间应加长。
     39 
     40 理想曲线两个波,前高后低四比一。
     41 
     42 一看二调多分析,调节质量不会低。
     43 \end{center}
     44 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~——PID~ 整定口诀
     45 
     46 \section{基本公式}
     47 
     48 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     49 \begin{math}
     50   U=P(e+\frac{1}{I}\int_0^t edt +D \frac{de}{dt})+U(0)
     51 \end{math}
     52 
     53 图解:
     54 
     55 \includegraphics[width=5in]{pic1}
     56 
     57 
     58 
     59 对积分项和微分项进行离散化处理:
     60 
     61 \begin{math}
     62 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \int_0^t edt \approx T \sum_{i=0}^k e(i)
     63 ~~~~~~~~~~~~ \frac{de(t)}{dt} \approx \frac{e(k)-e(k-1)}{T}
     64 \end{math}
     65 
     66 代入得:
     67 
     68 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     69 \begin{math}
     70   U(k)=P(e(k)+\frac{T}{I}\sum_{i=0}^k e(i) +D \frac{e(k)-e(k-1)}{T})
     71 \end{math}
     72 
     73 式中
     74 
     75 ~~~~~~U(k)——第k次采样时刻~PID~控制输出值;
     76 
     77 ~~~~~~~e(k)——第k次采样时刻输入偏差值;
     78 
     79 ~~~~e(k-1)——第k-1次采样时刻输入偏差值;
     80 
     81 ~~~~~~~~~~T——采样周期;
     82 
     83 ~~~~~P,I,D——PID~控制参数。
     84 
     85 \section{优点}
     86 
     87 \begin{description}
     88   \item[~~~~~~1)] 不需要了解系统和被控对象特性,就可应用~PID~控制;
     89   \item[~~~~~~2)] PID~控制解决了模拟量闭环控制的稳定性、快速性和准确性问题;
     90   \item[~~~~~~3)] 有典型的PID控制硬件电路和对~PID~控制规律进行离散化处理得到的~PID~控制算法;
     91   \item[~~~~~~4)] PID~控制有较强的适应性及灵活性,有各种改进的控制方式;
     92   \item[~~~~~~5)] PID~控制参数的整定有比较成熟的经验试凑法来进行参数整定。
     93   \item[~~~~~~6)] 应用过程易懂好学,一般人都能学习掌握。
     94 \end{description}
     95 
     96 \section{PID~控制整定参数方法}      %如果用{}括起来,可以限定作用范围
     97     \begin{enumerate}
     98       \item 理论计算法
     99       \item 经验试凑法
    100       \item 趋势读定法 (推荐)
    101     \end{enumerate}
    102 
    103     趋势读定法三要素:设定值、被调量、输出。三个曲线缺一不可。串级系统参照这个执
    104 行。被调量就是反映被调节对象的实际波动的量值。比如水位温度压力等等;设定值顾名思义,是人们设定的
    105 值,也就是人们期望被调量需要达到的值。被调量肯定是经常变化的。而设定值可以是固定的,也可以是经
    106 常变化的。
    107 
    108 
    109 \section{几个基本概念}%分段的方法是每一段空一行,会自动首行缩进
    110    \begin{itemize}
    111      \item 单回路:就是只有一个~PID 的调节系统。%中文与英文、中文与数字、文字与数学表达式, 之间要有适当的空隙,用“~“表示空格
    112      \item 串级:一个~PID 不够用怎么办?把两个~PID 串接起来,形成一个串级调节系统。又叫双
    113 回路调节系统。
    114      \item 主调:串级系统中,要调节被调量的那个~PID 叫做主调。
    115      \item 副调:串级系统中,输出直接去指挥执行器动作的那个~PID 叫做副调。主调的输出进入
    116 副调作为副调的设定值。一般来说,主调为了调节被调量,副调为了消除干扰。
    117      \item 正作用:比方说一个水池有一个进水口和一个出水口,进水量固定不变,依靠调节出水
    118 口的水量调节水池水位。那么水位如果高了,就需要调节出水量增大,对于~PID 调节器来说,输出
    119 随着被调量增高而增高,降低而降低的作用,叫做正作用。
    120      \item 负作用:还是这个水池,我们把出水量固定不变,而依靠调节进水量来调节水池水位。
    121 那么如果水池水位增高,就需要关小进水量。对于~PID 调节器来说,输出随着被调量的
    122 增高而降低的作用叫做负作用。
    123      \item 动态偏差:在调节过程中,被调量和设定值之间的偏差随时改变,任意时刻两者之间的
    124 偏差叫做动态偏差。简称动差。
    125      \item 静态偏差:调解趋于稳定之后,被调量和设定值之间还存在的偏差叫做静态偏差。简称
    126 静差。
    127      \item 回调:调节器调节作用显现,使得被调量开始由上升变为下降,或者由下降变为上升。
    128      \item 阶跃:被观察的曲线呈垂直上升或者下降,这种情况在异常情况下是存在的,比如人为
    129 修改数值,或者短路开路。
    130    \end{itemize}
    131 
    132 \section{P——比例作用}
    133 
    134 
    135 比例作用,就是把调节器的输入偏差乘以一个系数,作为调节器的输出。调节器的输入偏差就是
    136 被调量减去设定值的差值。
    137 
    138    一般来说,设定值不会经常改变,那就是说:当设定值不变的时候,调节器的输出只与被调量的波
    139 动有关。那么我们可以基本上得出如下一个概念性公式:
    140      \begin{center}
    141                   ~~~~~~~~~~~~~~~~~~~~ 输出波动=被调量波动*比例增益 ~~~~ (注:当设定值不变)
    142      \end{center}
    143 
    144 注意,这只是一个概念性公式,而不是真正的计算公式。通过概念性公式,我们可以得到如下结论,对于一个单回路调节系统,单纯的比例作用下:输出的波形与被调量的波形完全相似。
    145 
    146 纯比例作用的曲线判断其实就这么一个标准。一句话简述:被调量变化多少,输出乘以
    147 比例系数的积就变化多少。或者说:被调量与输出的波形完全相似
    148 
    149 为了让大家更深刻理解这个标准,咱们弄几个输出曲线和被调量曲线的推论:
    150 \begin{description}
    151   \item[~~~~~~1)] 对于正作用的调节系统,顶点、谷底均发生在同一时刻。
    152   \item[~~~~~~2)] 对于负作用的调节系统,被调量的顶点就是输出的谷底,谷底就是输出的顶点。
    153   \item[~~~~~~3)] 对于正作用的调节系统,被调量的曲线上升,输出曲线就上升;被调量曲线下降,
    154 输出曲线就下降。两者趋势完全一样。
    155   \item[~~~~~~4)] 对于负作用的调节系统,被调量曲线和输出曲线相对。 波动周期完全一致。
    156   \item[~~~~~~5)] 只要被调量变化,输出就变化;被调量不变化,不管静态偏差有多大,输出也不
    157 会变化。
    158 \end{description}
    159 \section{I——积分作用}
    160 
    161 
    162 积分作用,就是如果调节器的输如偏差不等于零,就让调节器的输出按
    163 照一定的速度一直朝一个方向累加下去。
    164 
    165 积分相当于一个斜率发生器。启动这个发生器的前提是调节器的输入偏差不等于零,斜
    166 率的大小与两个参数有关:输入偏差的大小、积分时间。
    167 
    168 在许多调节系统中,规定单纯的积分作用是不存在的。它必须要和比例作用配合在一起
    169 使用才有意义。我不知道是不是所有的系统都有这么一个规定,之所以说是个规定,是因为,
    170 从原理上讲,纯积分作用可以存在,但是很可能没有实用意义。这里不作过分的空想和假设。
    171 为了分析方便,咱们把积分作用剥离开来,对其作单纯的分析。那么单纯积分作用的特性总
    172 结如下:
    173 \begin{description}
    174   \item[~~~~~~1)] 输出的升降与被调量的升降无关,与输入偏差的正负有关。
    175   \item[~~~~~~2)] 输出的升降与被调量的大小无关。
    176   \item[~~~~~~3)] 输出的斜率与被调量的大小有关。
    177   \item[~~~~~~4)] 被调量不管怎么变化,输出始终不会出现节跃扰动。
    178   \item[~~~~~~5)] 被调量达到顶点的时候,输出的变化趋势不变,速率开始减缓。
    179   \item[~~~~~~6)] 输出曲线达到顶点的时候,必然是输入偏差等于零的时候。
    180 \end{description}
    181 \section{D——微分作用}
    182 
    183 
    184 微分作用。单纯的微分作用是不存在的。同积分作用一样,我们之所以要把微分作用
    185 单独隔离开来讲,就是为了理解的方便。一句话简述:被调量不动,输出不动;被调量一动,输出马上跳。
    186 
    187 根据微分作用的特点,咱们可以得出如下曲线的推论:
    188 \begin{description}
    189   \item[~~~~~~1)] 微分作用与被调量的大小无关,与被调量的变化速率有关;
    190   \item[~~~~~~2)] 与被调量的正负无关,与被调量的变化趋势有关;
    191   \item[~~~~~~3)] 如果被调量有一个阶跃,就相当于输入变化的速度无穷大,那么输出会直接到最小或者最大;
    192   \item[~~~~~~4)] 微分参数有的是一个,用微分时间表示。有的分为两个:微分增益和微分时间。微
    193 分增益表示输出波动的幅度,波动后还要输出回归,微分时间表示回归的快慢。
    194   \item[~~~~~~5)] 由第4 条得出推论:波动调节之后,输出还会自动拐回头。
    195 \end{description}
    196 
    197 都说微分作用能够超前调节。可是微分作用到底是怎样超前调节的?一些人会忽略这个
    198 问题。\textbf{合理搭配微分增益和微分时间,会起到让你起初意想不到的效果。}(不是很理解)
    199 
    200 比例积分微分三个作用各有各的特点。这个必须要区分清楚。温习一下:
    201 \begin{description}
    202   \item[~~~~~~*] 比例作用:输出与输入曲线相似。
    203   \item[~~~~~~*] 积分作用:只要输入有偏差输出就变化。
    204   \item[~~~~~~*] 微分作用:输入有抖动输出才变化,且会猛变化。
    205 \end{description}
    206 \section{PID~控制算法}
    207 
    208 \subsection{位置式~PID~控制算法}
    209 
    210   \begin{center}
    211   \begin{math}
    212   U(k)=P(e(k)+\frac{T}{I}\sum_{i=0}^k e (i) +D \frac{e(k)-e(k-1)}{T})
    213   \end{math}
    214   \end{center}
    215 
    216 \setlength{\parindent}{0cm}上式是直接按~PID~控制规律定义计算的,它给出的是全部控制量的大小,直接给出了执行器的执行位置,因此被称作全量式或位置式~PID~ 控制算法。
    217 
    218 这种算法的缺点是:由于是全量输出,所以每次输出均与过去状态有关,计算时要对~$e(k)$ 进行累加,工作量大。
    219 \subsection{增量式~PID~控制算法}
    220 
    221   \begin{eqnarray}
    222   \Delta U(k) &=&U(k)-U(k-1)\nonumber\\%&=&用于上下行的对齐,\nonumber用于取消行号,\\用于隔行
    223               &=&P(e(k)-e(k-1)+\frac{T}{I}e(k)+D\frac{e(k)-2e(k-1)+e(k+2)}{T})\nonumber\\
    224               &=&a_0 e(k)+a_1 e(k-1)+a_2 e(k-2)\nonumber
    225    \end{eqnarray}
    226 
    227   当执行机构需要的控制量是增量时而不是未知量的绝对值时,都使用增量式控制算法。
    228   式中:
    229   \begin{eqnarray}
    230   a_0 &=&P(1+\frac{T}{I}+\frac{D}{T})\nonumber\\
    231   a_1 &=&P(1+\frac{2D}{T})\nonumber\\
    232   a_2 &=&P\frac{D}{T}\nonumber
    233   \end{eqnarray}
    234   优点:A,B,C为定值,只要确定了前三次测量的偏差值,就可以算出增量。计算量相对来说较小,在实际中得到广泛的应用。
    235 
    236 由增量式推出位置式:
    237 \begin{eqnarray}
    238   U(k)=U(k-1)+\Delta U(k)\nonumber
    239 \end{eqnarray}
    240 \subsection{微分先行~PID~控制算法}
    241 
    242   优点:微分先行PID控制是对偏差作比例积分作用对输出作微分作用控制结构如下图所示。适用于给定值频繁变化的场合 可以避免给定值升降引起的系统震荡从而提高了系统的动态特性。
    243 \subsection{PID算法程序框图}
    244 \includegraphics[width=6in]{pic2}
    245 \end{CJK*}
    246 \end{document}
    欢迎阅读我的文章,如发现问题,请务必留言指正。 本博客内容除注明转载的内容外,均为作者原创,转载请注明原地址! 博客地址:http://www.cnblogs.com/connorzx/ 希望在未来的日子里我和你共同进步。
  • 相关阅读:
    【转】Android事件分发机制完全解析,带你从源码的角度彻底理解(下)
    【转】Android事件分发机制完全解析,带你从源码的角度彻底理解(上)
    【转】Android 使用Scroller实现绚丽的ListView左右滑动删除Item效果
    android Touch事件传递小结
    【转】七、android图片特效处理之光晕效果
    【转】六、android图片特效处理之图片叠加
    【转】五、android图片特效处理之光照效果
    【转】四、android图像特效处理之底片效果
    【转】三、android图片特效处理之锐化效果
    linux命令简写与全写
  • 原文地址:https://www.cnblogs.com/connorzx/p/2910720.html
Copyright © 2011-2022 走看看