zoukankan      html  css  js  c++  java
  • 机器学习——聚类分析和主成分分析

    机器学习——聚类分析和主成分分析

    在机器学习中,非监督性学习主要用来分类。其中重要的两种就是聚类分析和主成分分析。这两类算法在数据压缩和数据可视化方面有着广泛的应用。

    所谓无监督学习是指训练集里面只有点({x^{(1)},x^{(2)},ldots,x^{(m)}}),没有对应的性质标签(y)。所以非监督性学习的目的不再是预测,而是分类。

    一、聚类分析

    经典的聚类分析算法是K-mean算法。K是类的数目,mean是均值。

    1. K-mean算法

    • 1.给定训练集({x^{(1)},x^{(2)},ldots,x^{(m)}},x^{(i)} in R^n),随机选取(k)个聚类的质心点,记为(u_1,u_2,ldots,u_k in R^n)
    • 2.重复下面过程知道算法收敛{
      对于每一个样例(i),计算与它距离最近的质心点,并记下相应中心的编号。

    [c^{(i)}:=arg min limits_{j} ||x^{(i)}-u_j||^2 ]

    对于每一类$j$,重新计算对应的质心
    

    [u_j:=frac{sum limits_{i=1}^{m}1 {c^{(i)}=j }x^{(i)}}{sum limits_{i=1}^{m}1 {c^{(i)}=j}} ]

    }
    

    注意:在处理前,先将数据作规范化处理

    2. 如何选取起点

    与选取随机点相比,随机选取数据点作为质心更加合理。另外,因为K-means算法可能收敛到局部最优点,所以一般采取多次外循环,求得一系列的结果,然后选取结果中(J(c,u))最小的一个。(J(c,u))的定义如下:

    [J(c,u)= {1 over m}sum limits _{i=1}^{m}||x^{(i)}-u_{c^{(i)}}||^2 ]

    3. 如何决定分类个数

    关于分类个数的选取,一般是根据需求人工选择的。选择时一般考虑分类的目的是什么,然后根据更好地实现目的进行选择。
    其次,有一种可以参考的分类方法,叫做“肘部法则”。如下图所示,一般选取斜率从大到小急剧变化那一点。但有时,也会有斜率一直缓慢变化的情况。

    4. 应用

    聚类分析可以用于数据压缩。具体思路就是将图片内所有的像素点分成K类,每一类的颜色设置成一个值。下面是例子,将原来的颜色压缩成了16个,仍然可以辨认出图像。

    二、主成分分析(PCA)

    1.算法步骤

    • 1.数据规范化。将数据规范为均值为0,方差为1的数据。
    • 2.求解协方差矩阵。

    [Sigma { m{ = }}{1 over { m{m}}}{X^T}X ]

    • 3.对下方差矩阵进行SVD分解。

    [[U, S, V] = svd(Sigma) ]

    • 4.数据投影。

    [Z=XU(:,1:K) ]

    • 5.数据恢复

    [X_{rec}=ZU(:,1:K)^T ]

    2.算法原理

    PCA的算法原理是基于SVD分解的一种算法。根据SVD分解中奇异值是从大到小排列,只选取前K项最大值,对原信号进行相应的变换。将相当于N维空间到K维空间的投影。
    其中,K值的选取需要满足(frac{sum limits_{i=1}^{K}S_{ii}}{sum limits_{i=1}^{N}S_{ii}} ge 99 \%)

    3.应用举例

    • 数据压缩。数据压缩可用来存储数据、加快算法速度。
    • 数据可视化。一般设法将数据降到2维或者3维,以便可视化。

    下面例子是一个利用PCA算法来提取脸部特征后结果图。这些脸部特征可以用来进行面部识别。

  • 相关阅读:
    validFrom不通过submit按钮来触发表单验证
    微信小程序组件开发
    css3 单行文字溢出,多行文字溢出
    表格布局
    对象设置默认属性
    按钮样式
    判断一个json是否为空
    vue高仿饿了么(三)
    Win10 用IE打开网址默认跳转到Edge如何解决?
    VMware虚拟机安装Win11正式版
  • 原文地址:https://www.cnblogs.com/connorzx/p/4727686.html
Copyright © 2011-2022 走看看