zoukankan      html  css  js  c++  java
  • 工程优化学习(进退法、黄金分割法、二次插值法、三次插值法、最速下降法)

    工程优化课程学了进退法、黄金分割法、二次插值法、三次插值法、最速下降法。我自己只测试用最速下降法求(恩,水货我只调试了这一个,调了好多次才调通,然后其他的也没心情调试了):minf(x) = x1^2 + 25*x2^2,得到结果如下图所示,与该函数的极小值点(0,0)在精度误差之内。



    #ifndef ENGINEERINGOPTIMIZATION_H_INCLUDED
    #define ENGINEERINGOPTIMIZATION_H_INCLUDED
    
    #include <vector>
    
    using std::vector;
    
    /* description:区间类
    */
    class Region
    {
    public:
        double frontierLow; //一维定义域下界
        double frontierHigh; //一维定义域上界
        vector<double> lowerBoundDomain; //n维矢量下界
        vector<double> upperBoundDomain; //n维矢量上界
    
        Region() {}
        Region(double l, double h)
        {
            frontierLow = l;
            frontierHigh = h;
        }
        Region(double l, double h, vector<double> lowerBound,
                vector<double> upperBound)
        {
            frontierLow = l;
            frontierHigh = h;
            lowerBoundDomain = lowerBound;
            upperBoundDomain = upperBound;
        }
        Region(vector<double> lowerBound, vector<double> upperBound)
        {
            lowerBoundDomain = lowerBound;
            upperBound = upperBoundDomain;
        }
        Region(const Region &region)
        {
            frontierLow = region.frontierLow;
            frontierHigh = region.frontierHigh;
            lowerBoundDomain = region.lowerBoundDomain;
            upperBoundDomain = region.upperBoundDomain;
        }
    };
    
    
    /* @description 计算n维矢量的模值
    **
    */
    double vectorMag(const vector<double> &v);
    
    /*
    ** @description 进退法求搜索区间。
    ** @param initialPoint 搜索初始点
    ** @param initialStep 搜索初始步长
    ** @param targetFunc 目标函数f(x)的回调函数,调用者需要提供此函数。
    **  它接受一个参数,变量x,返回目标函数的函数值
    ** @return 返回搜索到的区间
    */
    //变量x是一维空间中的点
    Region computeSearchRegion(double initialPoint, double initialStep, double (*targetFuc)(double x, int derivationOrder));
    
    /*
    ** @description 黄金分割法求最小值,目标函数需是单峰函数。缩短搜素区间的三个原则(a<=x<=b):
    **          1、“去坏留好”原则,若f(x1)<f(x2),则a<x_min<x2
    **          2、对称原则,x1-a = b-x2
    **          3、等比收缩原则,每次留下区间的长度都是上次留下区间长度的w倍(0<w<1)
    **           调用者需提供目标函数
    ** @param region 目标函数的定义域
    ** @param precision 精度
    ** @param target 指向目标函数的函数指针
    ** @return 返回目标函数的极小值点
    */
    double goldenSectionMethod(const Region &region, double precision, double (*targetFuc)(double x, int derivationOrder));
    
    
    /* @description 二次插值法
    ** @return 返回目标函数的极小值点
    */
    double quadraticInterpolation(double x1, double x2, double x3, double (*targetFuc)(double x, int derivationOrder));
    
    
    /* @description 三次插值法(Davidon搜索法)
    **              目标函数的第二参数为求导阶数
    ** @return 返回目标函数的极小值点
    */
    double cubicInterpolation(const Region &region, double step, double precision,
                              double (*targetFuc)(double x, int derivationOrder));
    
    /* @description 最速下降法求解极小值点 n维函数
    ** @return 返回极小值点n维矢量
    ** 回调函数 derivationOrder为负数时求最优步长,非负数求导
    */
    
    vector<double> steepestDescent(vector<double> &initialPoint, double precision,
                                        vector<double> (*targetFuc)(vector<double> &x, int derivationOrder));
    
    
    #endif // ENGINEERINGOPTIMIZATION_H_INCLUDED
    

    #include <iostream>
    #include "EngineeringOptimization.h"
    #include <cassert>
    #include <cmath>
    
    
    /* @description 计算n维矢量的模值
    **
    */
    double vectorMag(const vector<double> &v)
    {
        double mag = 0;
        for (int i = 0; i < v.size(); i++)
        {
            mag += v[i] * v[i];
        }
    
        return std::sqrt(mag);
    }
    
    /*
    ** @description 进退法求搜索区间。
    ** @param initialPoint 搜索初始点
    ** @param initialStep 搜索初始步长
    ** @param double (*targetFunc)(double, double) 目标函数f(x)的回调函数,调用者需要提供此函数。
    **  它接受一个参数,变量x,返回目标函数的函数值
    ** @return 返回搜索到的区间
    */
    Region computeSearchRegion(double initialPoint, double initialStep,
                               double (*targetFuc)(double x, int derivationOrder))
    {
        double frontierLow = initialPoint;
        double frontierHigh = initialPoint + initialStep;
        double fucValueLow = targetFuc(frontierLow, 0);
        double fucValueHigh = targetFuc(frontierHigh, 0);
        double step = initialStep;
        bool FLAG = false;
    
        if (fucValueHigh < fucValueLow) //前进运算
        {
            do
            {
                if (FLAG)
                    frontierLow -= step;
    
                step *= 2;
                frontierHigh += step;
                fucValueLow = fucValueHigh;
                fucValueHigh = targetFuc(frontierHigh, 0);
                FLAG = true;
            }
            while (fucValueHigh < fucValueLow);
    
            return Region(frontierLow, frontierHigh);
        }
        else //后退运算
        {
            step = -(step / 4);
    
            do
            {
                if (FLAG)
                {
                    frontierHigh = frontierLow - step;
                    step += step;
                }
    
                frontierLow += step;
                fucValueHigh = fucValueLow;
                fucValueLow = targetFuc(frontierLow, 0);
                FLAG = true;
            }
            while (fucValueHigh >= fucValueLow);
    
            return Region(frontierLow, frontierHigh);
        }
    
    }
    
    
    /*
    ** @description 黄金分割法求最小值,目标函数需是单峰函数。缩短搜素区间的三个原则(a<=x<=b):
    **          1、“去坏留好”原则,若f(x1)<f(x2),则a<x_min<x2
    **          2、对称原则,x1-a = b-x2
    **          3、等比收缩原则,每次留下区间的长度都是上次留下区间长度的w倍(0<w<1)
    **           调用者需提供目标函数
    ** @param region 目标函数的定义域
    ** @param precision 精度
    ** @param target 指向目标函数的函数指针
    ** @return 返回目标函数的最小值
    */
    double goldenSectionMethod(const Region &region, double precision,
                               double (*targetFuc)(double x, int derivationOrder))
    {
        double frontierLow = region.frontierLow;
        double frontierHigh = region.frontierHigh;
        double x1 = frontierLow + 0.382 * (frontierHigh - frontierLow);
        double x2 = frontierLow + frontierHigh - x1;
        double valueLow = targetFuc(x1, 0);
        double valueHigh = targetFuc(x2, 0);
    
        while (valueLow > valueHigh)
        {
            frontierLow = x1;
            if (frontierHigh - frontierLow > -precision && frontierHigh - frontierLow < precision)
                return (frontierHigh + frontierLow) / 2.0;
            x1 = x2;
            x2 = frontierLow + 0.618 * (frontierHigh - frontierLow);
            valueLow = valueHigh;
            valueHigh = targetFuc(x2, 0);
        }
    
        while (valueLow <= valueHigh)
        {
            frontierHigh = x2;
            if (frontierHigh - frontierLow > -precision && frontierHigh - frontierLow < precision)
                return (frontierHigh + frontierLow) / 2.0;
            x2 = x1;
            x1 = frontierLow + 0.382 * (frontierHigh - frontierLow);
            valueHigh = valueLow;
            valueLow = targetFuc(x1, 0);
        }
    }
    
    
    /* @description 二次插值法
    ** @return 返回目标函数的最小值
    */
    double quadraticInterpolation(double x1, double x2, double x3,
                                  double (*targetFuc)(double x, int derivationOrder))
    {
        double tmp;
        if (x1 < x2)
        {
            tmp = x1;
            x1 = x2;
            x2 = tmp;
        }
        if (x3 < x2)
        {
            tmp = x2;
            x2 = x3;
            x3 = tmp;
        }
    
        double f1 = targetFuc(x1, 0);
        double f2 = targetFuc(x2, 0);
        double f3 = targetFuc(x3, 0);
    
        double c1 = (f3 - f1) / (x3 - x1);
        double c2 = ((f2 - f1) / (x2 - x1) - c1) / (x2 - x3);
        double x_min = 0.5 * (x1 + x3 - c1 / c2);
        return x_min;
    }
    
    
    /* @description 三次插值法(Davidon搜索法)
    **              目标函数的第二参数为求导阶数
    ** @return 返回目标函数最小值
    */
    double cubicInterpolation(const Region &region, double step, double precision,
                              double (*targetFuc)(double x, int derivationOrder))
    {
        double a = region.frontierLow;
        double b = region.frontierHigh;
        double h = step;
        bool FLAG = false;
    
        assert(precision > 0);
    
        double v = targetFuc(a, 1);
        if (v > -precision && v < precision)
            return a;
    
        do
        {
            if (FLAG)
                h /= 10;
    
            if (v < 0)
                h = std::abs(h);
            else
                h = -std::abs(h);
    
            double u;
            do
            {
                b = a + h;
                u = targetFuc(b, 1);
                if (u > - precision && u < precision)
                    return b;
                if (u * v < 0)
                    break;
    
                h *= 2;
                v =u;
                a = b;
            }
            while(true);
    
            double s = 3 * (targetFuc(a, 0) - targetFuc(b, 0)) / (b - a);
            double z = s - u -v;
            double w = std::sqrt(z * z - u * v);
    
            if (v > 0)
            {
                a = a - (b - a) * v / (z - w -v);
            }
            else
            {
                a = a - (b - a) * v / (z + w -v);
            }
    
            v = targetFuc(a, 1);
    
            FLAG = true;
        }
        while (v > precision || v < -precision);
    
        return a;
    }
    
    
    /* @description 最速下降法求解极小值点 n维函数
    ** @return 返回极小值点n维矢量
    ** 回调函数 derivationOrder为负数时求最优步长,非负数求导
    */
    vector<double> steepestDescent(vector<double> &initialPoint, double precision,
                                   vector<double> (*targetFuc)(vector<double> &x, int derivationOrder))
    {
        vector<double> x_k;
        x_k = initialPoint;
        vector<double> x_k1;
        vector<double> s_k;
        double e = precision;
        do
        {
            s_k = targetFuc(x_k, 1);
            double mag = vectorMag(s_k);
            if (mag <= e)
                return x_k;
    
            vector<double> combine;
            for (int i = 0; i < x_k.size(); i++)
                combine.push_back(x_k.at(i));
            for (int i = 0; i < s_k.size(); i++)
                combine.push_back(s_k.at(i));
    
            vector<double> tmp = targetFuc(combine, -1);
            double step = vectorMag(tmp);
    
                std::cout << "step =" << step <<std::endl;
    
            x_k1.clear();
            for (int i = 0; i < x_k.size(); i++)
            {
                x_k1.push_back(x_k.at(i) - s_k.at(i) * step);
            }
            x_k = x_k1;
    
        } while(true);
    }
    

    #include <iostream>
    #include <vector>
    #include "EngineeringOptimization.h"
    
    using namespace std;
    
    vector<double> targetFuc(vector<double> &x, int derivationOrder);
    
    int main()
    {
        cout << "Hello world!" << endl;
        vector<double> x0;
        x0.push_back(2);
        x0.push_back(2);
        cout << "Intial Point: " << x0[0] << x0[1] <<endl;
        vector<double> min_value = steepestDescent(x0, 0.01, targetFuc);
        vector<double> result = targetFuc(min_value, 0);
        cout<< "x*= [" << min_value[0] <<" "<< min_value[1] <<"]"<<endl;;
        cout<<"The min value point is "<< result.at(0) <<endl;;
        return 0;
    }
    
    //min f(x)=x1^2 + 25x2^2
    vector<double> targetFuc(vector<double> &x, int derivationOrder)
    {
        vector<double> f;
        double value;
        f.push_back(0);
        switch (derivationOrder)
        {
        case 0:
            f.clear();
            value = x[0] * x[0] + 25 * x[1] * x[1];
            f.push_back(value);
            break;
        case 1:
            f.clear();
            value = 2 * x[0];
            f.push_back(value);
            value = 50 * x[1];
            f.push_back(value);
            break;
        default:
            break;
        }
    
        if (derivationOrder < 0)
        {
            f.clear();
            value = (2.0*x[0]*x[2]+50*x[1]*x[3])/(2*x[2]*x[2] + 50*x[3]*x[3]);
            f.push_back(value);
        }
    
        return f;
    
    }
    



  • 相关阅读:
    nginx+vue刷新404
    java-Object类的解析(持续更新)
    Python源码学习(六)-PyCodeObject初探
    经典算法之不定方程问题
    MySql中的视图的概念及应用
    数据结构之 折半插入排序
    mahout算法源码分析之Itembased Collaborative Filtering实战
    【Android】为Android虚拟机创建SDCard
    30个酷毙的交互式网站(HTML5+CSS3)
    项目总结——也谈svn版本库迁移
  • 原文地址:https://www.cnblogs.com/corfox/p/5415013.html
Copyright © 2011-2022 走看看