zoukankan      html  css  js  c++  java
  • 最小二乘法的Java实现

    最小二乘法原理十分简单,这里不再赘述。对于预测公式y' = a * x + b,最优解如下

    double a = Sxy / Sxx;

    double b = yAvg - a * xAvg;

    double r = Sxy / Math.sqrt(Sxx * Syy);

    其中,r为相关系数,绝对值越大,线性相关性越大。对f(a, b) = (y - y')^2求极值,即可得到上述解。

    package coshaho.learn;
    
    import java.util.HashMap;
    import java.util.Map;
    import java.util.Random;
    
    /**
     * 最小二乘法
     * @author coshaho
     *
     */
    public class MyLineRegression 
    {
        /**
         * 最小二乘法
         * @param X
         * @param Y
         * @return y = ax + b, r
         */
        public Map<String, Double> lineRegression(double[] X, double[] Y)
        {
            if(null == X || null == Y || 0 == X.length 
                    || 0 == Y.length || X.length != Y.length)
            {
                throw new RuntimeException();
            }
            
            // x平方差和
            double Sxx = varianceSum(X);
            // y平方差和
            double Syy = varianceSum(Y);
            // xy协方差和
            double Sxy = covarianceSum(X, Y);
            
            double xAvg = arraySum(X) / X.length;
            double yAvg = arraySum(Y) / Y.length;
            
            double a = Sxy / Sxx;
            double b = yAvg - a * xAvg;
            
            // 相关系数
            double r = Sxy / Math.sqrt(Sxx * Syy);
            Map<String, Double> result = new HashMap<String, Double>();
            result.put("a", a);
            result.put("b", b);
            result.put("r", r);
            
            return result;
        }
        
        /**
         * 计算方差和
         * @param X
         * @return
         */
        private double varianceSum(double[] X)
        {
            double xAvg = arraySum(X) / X.length;
            return arraySqSum(arrayMinus(X, xAvg));
        }
        
        /**
         * 计算协方差和
         * @param X
         * @param Y
         * @return
         */
        private double covarianceSum(double[] X, double[] Y)
        {
            double xAvg = arraySum(X) / X.length;
            double yAvg = arraySum(Y) / Y.length;
            return arrayMulSum(arrayMinus(X, xAvg), arrayMinus(Y, yAvg));
        }
        
        /**
         * 数组减常数
         * @param X
         * @param x
         * @return
         */
        private double[] arrayMinus(double[] X, double x)
        {
            int n = X.length;
            double[] result = new double[n];
            for(int i = 0; i < n; i++)
            {
                result[i] = X[i] - x;
            }
            
            return result;
        }
        
        /**
         * 数组求和
         * @param X
         * @return
         */
        private double arraySum(double[] X)
        {
            double s = 0 ;
            for( double x : X ) 
            {
                s = s + x ;
            }
            return s ;
        }
        
        /**
         * 数组平方求和
         * @param X
         * @return
         */
        private double arraySqSum(double[] X)
        {
            double s = 0 ;
            for( double x : X ) 
            {
                s = s + Math.pow(x, 2) ; ;
            }
            return s ;
        }
        
        /**
         * 数组对应元素相乘求和
         * @param X
         * @return
         */
        private double arrayMulSum(double[] X, double[] Y)
        {
            double s = 0 ;
            for( int i = 0 ; i < X.length ; i++ ) 
            {
                s = s + X[i] * Y[i] ;
            }
            return s ;
        }
        
        public static void main(String[] args)
        {
            Random random = new Random();    
            double[] X = new double[20];
            double[] Y = new double[20];
            
            for(int i = 0; i < 20; i++)
            {
                X[i] = Double.valueOf(Math.floor(random.nextDouble() * 97));
                Y[i] = Double.valueOf(Math.floor(random.nextDouble() * 997));
            }
            
            System.out.println(new MyLineRegression().lineRegression(X, Y));
        }
    }
  • 相关阅读:
    P2730 魔板 Magic Squares
    P2124 奶牛美容
    4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)
    3.Longest Substring Without Repeating Characters(string; HashTable)
    2.Add Two Numbers (List)
    1.Two Sum (Array; HashTable)
    C++中的浅拷贝、深拷贝、智能指针
    C++ 静态数据成员和静态成员函数
    C & C++ 宏与const
    C++指针与引用
  • 原文地址:https://www.cnblogs.com/coshaho/p/8806414.html
Copyright © 2011-2022 走看看