zoukankan      html  css  js  c++  java
  • 0909案例实战:Python实现逻辑回归与梯度下降策略

    根据成绩预测学生录取情况:

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy.random
    from sklearn import preprocessing as pp  # 数据标准化
    import time
    %matplotlib inline
    
    
    #洗牌
    def shuffleData(data):
        np.random.shuffle(data)
        cols = data.shape[1]
        X = data[:, 0:cols-1]
        y = data[:, cols-1:]
        return X, y
    
    # 定义停止方式
    STOP_ITER = 0
    STOP_COST = 1
    STOP_GRAD = 2
    
    def stopCriterion(type, value, threshold):
        #设定三种不同的停止策略
        if type == STOP_ITER:        return value > threshold
        elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold
        elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold
    
    
    # 定义函数
    #设定阈值  预测  概率值转化为  类别值
    def predict(X, theta):
        return [1 if x >= 0.5 else 0 for x in model(X, theta)]
    # 定义函数
    def sigmoid(z):
        return 1 / (1 + np.exp(-z))
    
    # 定义函数
    def model(X, theta):
        """ Returns our model result
        :param X: examples to classify, n x p
        :param theta: parameters, 1 x p
        :return: the sigmoid evaluated for each examples in X given parameters theta as a n x 1 vector
        """
        return sigmoid(np.dot(X, theta.T))
    
    # 定义损失函数
    def cost(X, y, theta):
        left = np.multiply(-y, np.log(model(X, theta)))
        right = np.multiply(1 - y, np.log(1 - model(X, theta)))
        return np.sum(left - right) / (len(X))
    # 定义梯度下降函数
    def gradient(X, y, theta):
        grad = np.zeros(theta.shape)
        error = (model(X, theta)- y).ravel()
        for j in range(len(theta.ravel())): #for each parmeter
            term = np.multiply(error, X[:,j])
            grad[0, j] = np.sum(term) / len(X)
        
        return grad
    
    
    # 定义函数
    def descent(data, theta, batchSize, stopType, thresh, alpha):
        #梯度下降求解
        
        init_time = time.time()
        i = 0 # 迭代次数
        k = 0 # batch
        X, y = shuffleData(data)
        grad = np.zeros(theta.shape) # 计算的梯度
        costs = [cost(X, y, theta)] # 损失值
    
        
        while True:
            grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
            k += batchSize #取batch数量个数据
            if k >= n: 
                k = 0 
                X, y = shuffleData(data) #重新洗牌
            theta = theta - alpha*grad # 参数更新
            costs.append(cost(X, y, theta)) # 计算新的损失
            i += 1 
    
            if stopType == STOP_ITER:       value = i
            elif stopType == STOP_COST:     value = costs
            elif stopType == STOP_GRAD:     value = grad
            if stopCriterion(stopType, value, thresh): break
        
        return theta, i-1, costs, grad, time.time() - init_time
    
    # 定义函数
    def runExpe(data, theta, batchSize, stopType, thresh, alpha):
        #import pdb; pdb.set_trace();
        theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
        name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
        name += " data - learning rate: {} - ".format(alpha)
        if batchSize==n: strDescType = "Gradient"
        elif batchSize==1:  strDescType = "Stochastic"
        else: strDescType = "Mini-batch ({})".format(batchSize)
        name += strDescType + " descent - Stop: "
        if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
        elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
        else: strStop = "gradient norm < {}".format(thresh)
        name += strStop
        print ("***{}
    Theta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
            name, theta, iter, costs[-1], dur))
        fig, ax = plt.subplots(figsize=(12,4))
        ax.plot(np.arange(len(costs)), costs, 'r')
        ax.set_xlabel('Iterations')
        ax.set_ylabel('Cost')
        ax.set_title(name.upper() + ' - Error vs. Iteration')
        return theta
    
    
    #读取 数据
    import os
    path = 'data' + os.sep + 'LogiReg_data.txt'
    pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
    pdData.head()
    # 数据分布画图
    positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples
    negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples
    
    fig, ax = plt.subplots(figsize=(10,5))
    ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
    ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
    ax.legend()
    ax.set_xlabel('Exam 1 Score')
    ax.set_ylabel('Exam 2 Score')
    pdData.insert(0, 'Ones', 1) # in a try / except structure so as not to return an error if the block si executed several times
    
    
    # set X (training data) and y (target variable)
    orig_data = pdData.values# convert the Pandas representation of the data to an array useful for further computations
    cols = orig_data.shape[1]
    X = orig_data[:,0:cols-1]
    y = orig_data[:,cols-1:cols]
    
    # convert to numpy arrays and initalize the parameter array theta
    #X = np.matrix(X.values)
    #y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values)
    theta = np.zeros([1, 3])
    
    
    # 梯度下降求参数
    n=100
    # 1 设定迭代次数
    runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
    #  2 根据损失值停止
    runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
    # 3 根据梯度变化停止
    runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
    # 4 对比不同的梯度下降方法
    runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
    runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
    # 5 Mini-batch descent
    runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
    
    scaled_data = orig_data.copy()
    scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
    
    runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
    runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
    theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)
    
    
    # 预测
    scaled_X = scaled_data[:, :3]
    y = scaled_data[:, 3]
    predictions = predict(scaled_X, theta)
    correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
    accuracy = (sum(map(int, correct)) % len(correct))
    print ('accuracy = {0}%'.format(accuracy))
  • 相关阅读:
    第二周 历年学生作品评论
    第二周 WBS、NABCD查阅
    第二周 SCRUM站立会议
    第二周 燃尽图
    第二周 对读构建之法后提出的五个问题
    补上一周的进度条
    词频统计
    每周进度及工作量统计——第三周
    第三周 四人小组
    词频统计 效能分析
  • 原文地址:https://www.cnblogs.com/countryboy666/p/14497726.html
Copyright © 2011-2022 走看看