zoukankan      html  css  js  c++  java
  • (HDOJ1032)The 3n + 1 problem

    Problem Description
    Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

    Consider the following algorithm: 


        1.      input n

        2.      print n

        3.      if n = 1 then STOP

        4.           if n is odd then n <- 3n + 1

        5.           else n <- n / 2

        6.      GOTO 2


    Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 

    It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.) 

    Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16. 

    For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j. 
     
    Input
    The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0. 

    You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j. 

    You can assume that no opperation overflows a 32-bit integer.
     
    Output
    For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line). 
     
    Sample Input
    1 10
    100 200
    201 210
    900 1000
     
    Sample Output
    1 10 20
    100 200 125
    201 210 89
    900 1000 174
     
     1 #include<stdio.h>
     2 #include<math.h>
     3 #include<string.h>
     4 
     5 void swap(int *a, int *b)
     6 {
     7    int t;
     8    t=*a;
     9    *a=*b;
    10    *b=t;
    11 }
    12 
    13 int compute(int n)
    14 {
    15    int s=0;
    16    while(n!=1)
    17    {
    18        if(n%2)
    19      {
    20        n=3*n+1;
    21        s++;
    22      }
    23      else
    24      {
    25        n=n/2;
    26        s++;
    27      }
    28    }
    29    return s+1;
    30 }
    31 
    32 
    33 void deal(int m, int n)
    34 {
    35   int i,k;
    36   int flag=0;
    37   if(m>n)
    38   {
    39       swap(&m,&n);
    40       flag=1;
    41   }
    42   int max=compute(m);
    43   k=m;
    44   for(i=m+1; i<=n; i++)
    45   {
    46      if(compute(i)>max)
    47      {
    48          max=compute(i);
    49          k=i;
    50      }
    51   }
    52   if(flag)
    53     printf("%d %d %d\n",n,m,max);
    54   else
    55     printf("%d %d %d\n",m,n,max);
    56 }
    57 
    58 
    59 void solve()
    60 {  int m,n;
    61    while(scanf("%d %d",&m,&n)!=EOF)
    62    {
    63          deal(m,n);  
    64    }
    65 }
    66 
    67 
    68 int main()
    69 {    
    70    solve();
    71    getchar();
    72    getchar();
    73    return 0;    
    74 }
     
  • 相关阅读:
    oracle的根容器下新建pdb容器及本地用户
    oracle监听配置与防火墙问题
    oracle问题:ORA-09817及解决办法
    Oracle:Ora-01652无法通过128(在temp表空间中)扩展temp段的过程-解决步骤
    oracle:ORA-14765建索引阻塞创建分区及处理步骤
    oracle-组合索引字段位置与查询效率之间的关系
    hbase的split策略和预分区
    启动hbase后hmaster自动关闭
    hive一级分区、二级分区、动态分区
    hive beeline连接和交互shell连接
  • 原文地址:https://www.cnblogs.com/cpoint/p/3012879.html
Copyright © 2011-2022 走看看