zoukankan      html  css  js  c++  java
  • 经典傅里叶算法小集合 附完整c代码

     前面写过关于傅里叶算法的应用例子。

    基于傅里叶变换的音频重采样算法 (附完整c代码)

    当然也就是举个例子,主要是学习傅里叶变换。

    这个重采样思路还有点瑕疵,

    稍微改一下,就可以支持多通道,以及提升性能。

    当然思路很简单,就是切分,合并。

    留个作业哈。

    本文不讲过多的算法思路,傅里叶变换的各种变种,

    绝大多数是为提升性能,支持任意长度而作。

    当然各有所长,

    当时提到参阅整理的算法:

    https://github.com/cpuimage/StockhamFFT

    https://github.com/cpuimage/uFFT

    https://github.com/cpuimage/BluesteinCrz

    https://github.com/cpuimage/fftw3

    例如 : 

    Stockham 是优化速度, 

    BluesteinCrz 是支持任意长度,

    uFFT是经典实现。

    当然,各有利弊,精度也不一。

    最近一直对傅里叶算法没放手。

    还是想要抽点时间,不依赖第三方库,实现一份不差于fftw的算法,

    既要保证精度,又要保证性能,同时还要支持任意长度。

    目前还在进行中,目前项目完成了45%左右。

    越是学习,看的资料林林总总,越觉得傅里叶变换的应用面很广。

    花点时间,采用纯c ,实现了经典的傅里叶算法,

    调整代码逻辑,慢慢开始有点清晰了。

    前人栽树后人乘凉,为了学习方便,

    把本人用纯c实现的经典傅里叶算法开源出来给大家学习。

    算法逻辑写得简洁明了,我也是尽力了。

    当然,可能还有更好的实现思路,更多的改进算法。

    不过,我的目的更多是便于学习和理解算法。

    希望能帮助到一些也在学习傅里叶变换算法的同学。

    贴上完整算法代码:

    #include <stdio.h>
    #include <stdbool.h>
    #include <math.h>
    #include <stddef.h>
    #include <string.h>
    #include <stdlib.h>
    
    #ifndef M_PI
    #define M_PI 3.14159265358979323846f
    #endif
    
    typedef struct {
        float real, imag;
    } cmplx;
    
    cmplx cmplx_mul_add(const cmplx c, const cmplx a, const cmplx b) {
        const cmplx ret = {
                (a.real * b.real) + c.real - (a.imag * b.imag),
                (a.imag * b.real) + (a.real * b.imag) + c.imag
        };
        return ret;
    }
    
    void fft_Stockham(cmplx *input, cmplx *output, size_t n, int flag) {
        size_t half = n >> 1;
        cmplx *tmp = (cmplx *) calloc(sizeof(cmplx), n);
        cmplx *y = (cmplx *) calloc(sizeof(cmplx), n);
        memcpy(y, input, sizeof(cmplx) * n);
        for (size_t r = half, l = 1; r >= 1; r >>= 1) {
            cmplx *tp = y;
            y = tmp;
            tmp = tp;
            float factor_w = -flag * M_PI / l;
            cmplx w = {cosf(factor_w), sinf(factor_w)};
            cmplx wj = {1, 0};
            for (size_t j = 0; j < l; j++) {
                size_t jrs = j * (r << 1);
                for (size_t k = jrs, m = jrs >> 1; k < jrs + r; k++) {
                    const cmplx t = {(wj.real * tmp[k + r].real) - (wj.imag * tmp[k + r].imag),
                                     (wj.imag * tmp[k + r].real) + (wj.real * tmp[k + r].imag)};
                    y[m].real = tmp[k].real + t.real;
                    y[m].imag = tmp[k].imag + t.imag;
                    y[m + half].real = tmp[k].real - t.real;
                    y[m + half].imag = tmp[k].imag - t.imag;
                    m++;
                }
                const float t = wj.real;
                wj.real = (t * w.real) - (wj.imag * w.imag);
                wj.imag = (wj.imag * w.real) + (t * w.imag);
            }
            l <<= 1;
        }
        memcpy(output, y, sizeof(cmplx) * n);
        free(tmp);
        free(y);
    }
    
    void fft_radix3(cmplx *in, cmplx *result, size_t n, int flag) {
        if (n < 2) {
            memcpy(result, in, sizeof(cmplx) * n);
            return;
        }
        size_t radix = 3;
        size_t np = n / radix;
        cmplx *res = (cmplx *) malloc(sizeof(cmplx) * n);
        cmplx *f0 = res;
        cmplx *f1 = f0 + np;
        cmplx *f2 = f1 + np;
        for (size_t i = 0; i < np; i++) {
            for (size_t j = 0; j < radix; j++) {
                res[i + j * np] = in[radix * i + j];
            }
        }
        fft_radix3(f0, f0, np, flag);
        fft_radix3(f1, f1, np, flag);
        fft_radix3(f2, f2, np, flag);
        float wexp0 = -2 * (float) M_PI * (flag) / (float) (n);
        cmplx wt = {cosf(wexp0), sinf(wexp0)};
        cmplx w0 = {1, 0};
        for (size_t i = 0; i < np; i++) {
            const float w0r = w0.real;
            w0.real = (w0r * wt.real) - (w0.imag * wt.imag);
            w0.imag = (w0.imag * wt.real) + (w0r * wt.imag);
        }
        cmplx w = {1, 0};
        for (size_t j = 0; j < radix; j++) {
            cmplx wj = w;
            for (size_t k = 0; k < np; k++) {
                result[k + j * np] = cmplx_mul_add(f0[k], cmplx_mul_add(f1[k], f2[k], wj), wj);
                const float wjr = wj.real;
                wj.real = (wjr * wt.real) - (wj.imag * wt.imag);
                wj.imag = (wj.imag * wt.real) + (wjr * wt.imag);
            }
            const float wr = w.real;
            w.real = (wr * w0.real) - (w.imag * w0.imag);
            w.imag = (w.imag * w0.real) + (wr * w0.imag);
        }
        free(res);
    }
    
    void fft_radix5(cmplx *x, cmplx *result, size_t n, int flag) {
        if (n < 2) {
            memcpy(result, x, sizeof(cmplx) * n);
            return;
        }
        size_t radix = 5;
        size_t np = n / radix;
        cmplx *res = (cmplx *) calloc(sizeof(cmplx), n);
        cmplx *f0 = res;
        cmplx *f1 = f0 + np;
        cmplx *f2 = f1 + np;
        cmplx *f3 = f2 + np;
        cmplx *f4 = f3 + np;
        for (size_t i = 0; i < np; i++) {
            for (size_t j = 0; j < radix; j++) {
                res[i + j * np] = x[radix * i + j];
            }
        }
        fft_radix5(f0, f0, np, flag);
        fft_radix5(f1, f1, np, flag);
        fft_radix5(f2, f2, np, flag);
        fft_radix5(f3, f3, np, flag);
        fft_radix5(f4, f4, np, flag);
        float wexp0 = -2 * (float) M_PI * (flag) / (float) (n);
        cmplx wt = {cosf(wexp0), sinf(wexp0)};
        cmplx w0 = {1, 0};
        for (size_t i = 0; i < np; i++) {
            const float w0r = w0.real;
            w0.real = (w0r * wt.real) - (w0.imag * wt.imag);
            w0.imag = (w0.imag * wt.real) + (w0r * wt.imag);
        }
        cmplx w = {1, 0};
        for (size_t j = 0; j < radix; j++) {
            cmplx wj = w;
            for (size_t k = 0; k < np; k++) {
                result[k + j * np] = cmplx_mul_add(f0[k], cmplx_mul_add(f1[k], cmplx_mul_add(f2[k],
                                                                                             cmplx_mul_add(f3[k], f4[k],
                                                                                                           wj), wj), wj),
                                                   wj);
                const float wjr = wj.real;
                wj.real = (wjr * wt.real) - (wj.imag * wt.imag);
                wj.imag = (wj.imag * wt.real) + (wjr * wt.imag);
            }
            const float wr = w.real;
            w.real = (wr * w0.real) - (w.imag * w0.imag);
            w.imag = (w.imag * w0.real) + (wr * w0.imag);
        }
        free(res);
    }
    
    void fft_radix6(cmplx *input, cmplx *output, size_t n, int flag) {
        if (n < 2) {
            memcpy(output, input, sizeof(cmplx) * n);
            return;
        }
        size_t radix = 6;
        size_t np = n / radix;
        cmplx *res = (cmplx *) calloc(sizeof(cmplx), n);
        cmplx *f0 = res;
        cmplx *f1 = f0 + np;
        cmplx *f2 = f1 + np;
        cmplx *f3 = f2 + np;
        cmplx *f4 = f3 + np;
        cmplx *f5 = f4 + np;
        for (size_t i = 0; i < np; i++) {
            for (size_t j = 0; j < radix; j++) {
                res[i + j * np] = input[radix * i + j];
            }
        }
        fft_radix6(f0, f0, np, flag);
        fft_radix6(f1, f1, np, flag);
        fft_radix6(f2, f2, np, flag);
        fft_radix6(f3, f3, np, flag);
        fft_radix6(f4, f4, np, flag);
        fft_radix6(f5, f5, np, flag);
        float wexp0 = -2 * (float) M_PI * (flag) / (float) (n);
        cmplx wt = {cosf(wexp0), sinf(wexp0)};
        cmplx w0 = {1, 0};
        for (size_t i = 0; i < np; i++) {
            const float w0r = w0.real;
            w0.real = (w0r * wt.real) - (w0.imag * wt.imag);
            w0.imag = (w0.imag * wt.real) + (w0r * wt.imag);
        }
        cmplx w = {1, 0};
        for (size_t j = 0; j < radix; j++) {
            cmplx wj = w;
            for (size_t k = 0; k < np; k++) {
                output[k + j * np] = cmplx_mul_add(f0[k], cmplx_mul_add(f1[k], cmplx_mul_add(f2[k],
                                                                                             cmplx_mul_add(f3[k],
                                                                                                           cmplx_mul_add(
                                                                                                                   f4[k],
                                                                                                                   f5[k],
                                                                                                                   wj), wj),
                                                                                             wj), wj), wj);
                const float wjr = wj.real;
                wj.real = (wjr * wt.real) - (wj.imag * wt.imag);
                wj.imag = (wj.imag * wt.real) + (wjr * wt.imag);
            }
            const float wr = w.real;
            w.real = (wr * w0.real) - (w.imag * w0.imag);
            w.imag = (w.imag * w0.real) + (wr * w0.imag);
        }
        free(res);
    }
    
    void fft_radix7(cmplx *x, cmplx *result, size_t n, int flag) {
        if (n < 2) {
            memcpy(result, x, sizeof(cmplx) * n);
            return;
        }
        size_t radix = 7;
        size_t np = n / radix;
        cmplx *res = (cmplx *) calloc(sizeof(cmplx), n);
        cmplx *f0 = res;
        cmplx *f1 = f0 + np;
        cmplx *f2 = f1 + np;
        cmplx *f3 = f2 + np;
        cmplx *f4 = f3 + np;
        cmplx *f5 = f4 + np;
        cmplx *f6 = f5 + np;
        for (size_t i = 0; i < np; i++) {
            for (size_t j = 0; j < radix; j++) {
                res[i + j * np] = x[radix * i + j];
            }
        }
        fft_radix7(f0, f0, np, flag);
        fft_radix7(f1, f1, np, flag);
        fft_radix7(f2, f2, np, flag);
        fft_radix7(f3, f3, np, flag);
        fft_radix7(f4, f4, np, flag);
        fft_radix7(f5, f5, np, flag);
        fft_radix7(f6, f6, np, flag);
        float wexp0 = -2 * (float) M_PI * (flag) / (float) (n);
        cmplx wt = {cosf(wexp0), sinf(wexp0)};
        cmplx w0 = {1, 0};
        for (size_t i = 0; i < np; i++) {
            const float w0r = w0.real;
            w0.real = (w0r * wt.real) - (w0.imag * wt.imag);
            w0.imag = (w0.imag * wt.real) + (w0r * wt.imag);
        }
        cmplx w = {1, 0};
        for (size_t j = 0; j < radix; j++) {
            cmplx wj = w;
            for (size_t k = 0; k < np; k++) {
                result[k + j * np] = cmplx_mul_add(f0[k], cmplx_mul_add(f1[k], cmplx_mul_add(f2[k],
                                                                                             cmplx_mul_add(f3[k],
                                                                                                           cmplx_mul_add(
                                                                                                                   f4[k],
                                                                                                                   cmplx_mul_add(
                                                                                                                           f5[k],
                                                                                                                           f6[k],
                                                                                                                           wj),
                                                                                                                   wj), wj),
                                                                                             wj), wj), wj);
                const float wjr = wj.real;
                wj.real = (wjr * wt.real) - (wj.imag * wt.imag);
                wj.imag = (wj.imag * wt.real) + (wjr * wt.imag);
            }
            const float wr = w.real;
            w.real = (wr * w0.real) - (w.imag * w0.imag);
            w.imag = (w.imag * w0.real) + (wr * w0.imag);
        }
        free(res);
    }
    
    void fft_Bluestein(cmplx *input, cmplx *output, size_t n, int flag) {
        size_t m = 1 << ((unsigned int) (ilogbf((float) (2 * n - 1))));
        if (m < 2 * n - 1) {
            m <<= 1;
        }
        cmplx *y = (cmplx *) calloc(sizeof(cmplx), 3 * m);
        cmplx *w = y + m;
        cmplx *ww = w + m;
        float a0 = (float) M_PI / n;
        w[0].real = 1;
        if (flag == -1) {
            y[0].real = input[0].real;
            y[0].imag = -input[0].imag;
            for (size_t i = 1; i < n; i++) {
                const float wexp = a0 * i * i;
                w[i].real = cosf(wexp);
                w[i].imag = sinf(wexp);
                w[m - i] = w[i];
                y[i].real = (input[i].real * w[i].real) - (input[i].imag * w[i].imag);
                y[i].imag = (-input[i].imag * w[i].real) - (input[i].real * w[i].imag);
            }
        } else {
            y[0].real = input[0].real;
            y[0].imag = input[0].imag;
            for (size_t i = 1; i < n; i++) {
                const float wexp = a0 * i * i;
                w[i].real = cosf(wexp);
                w[i].imag = sinf(wexp);
                w[m - i] = w[i];
                y[i].real = (input[i].real * w[i].real) + (input[i].imag * w[i].imag);
                y[i].imag = (input[i].imag * w[i].real) - (input[i].real * w[i].imag);
            }
        }
        fft_Stockham(y, y, m, 1);
        fft_Stockham(w, ww, m, 1);
        for (size_t i = 0; i < m; i++) {
            const float r = y[i].real;
            y[i].real = (r * ww[i].real) - (y[i].imag * ww[i].imag);
            y[i].imag = (y[i].imag * ww[i].real) + (r * ww[i].imag);
        }
        fft_Stockham(y, y, m, -1);
        float scale = 1.0f / m;
        if (flag == -1) {
            for (size_t i = 0; i < n; i++) {
                output[i].real = ((y[i].real * w[i].real) + (y[i].imag * w[i].imag)) * scale;
                output[i].imag = -((y[i].imag * w[i].real) - (y[i].real * w[i].imag)) * scale;
            }
        } else {
            for (size_t i = 0; i < n; i++) {
                output[i].real = ((y[i].real * w[i].real) + (y[i].imag * w[i].imag)) * scale;
                output[i].imag = ((y[i].imag * w[i].real) - (y[i].real * w[i].imag)) * scale;
            }
        }
        free(y);
    }
    
    size_t base(size_t n) {
        size_t t = n & (n - 1);
        if (t == 0) {
            return 2;
        }
        for (size_t i = 3; i <= 7; i++) {
            size_t n2 = n;
            while (n2 % i == 0) {
                n2 /= i;
            }
            if (n2 == 1) {
                return i;
            }
        }
        return n;
    }
    
    void FFT(cmplx *input, cmplx *output, size_t n) {
        memset(output, 0, sizeof(cmplx) * n);
        if (n < 2) {
            memcpy(output, input, sizeof(cmplx) * n);
            return;
        }
        size_t p = base(n);
        switch (p) {
            case 2:
                fft_Stockham(input, output, n, 1);
                break;
            case 3:
                fft_radix3(input, output, n, 1);
                break;
            case 5:
                fft_radix5(input, output, n, 1);
                break;
            case 6:
                fft_radix6(input, output, n, 1);
                break;
            case 7:
                fft_radix7(input, output, n, 1);
                break;
            default:
                fft_Bluestein(input, output, n, 1);
                break;
        }
    }
    
    void IFFT(cmplx *input, cmplx *output, size_t n) {
        memset(output, 0, sizeof(cmplx) * n);
        if (n < 2) {
            memcpy(output, input, sizeof(cmplx) * n);
            return;
        }
        size_t p = base(n);
        switch (p) {
            case 2:
                fft_Stockham(input, output, n, -1);
                break;
            case 3:
                fft_radix3(input, output, n, -1);
                break;
            case 5:
                fft_radix5(input, output, n, -1);
                break;
            case 6:
                fft_radix6(input, output, n, -1);
                break;
            case 7:
                fft_radix7(input, output, n, -1);
                break;
            default: {
                fft_Bluestein(input, output, n, -1);
                break;
            }
        }
        float scale = 1.0f / n;
        for (size_t i = 0; i < n; i++) {
            output[i].real = output[i].real * scale;
            output[i].imag = output[i].imag * scale;
        }
    }
    
    int main() {
        printf("Fast Fourier Transform
    ");
        printf("blog: http://cpuimage.cnblogs.com/
    ");
        printf("A Simple and Efficient FFT Implementation in C");
        size_t N = 513;
        cmplx *input = (cmplx *) calloc(sizeof(cmplx), N);
        cmplx *output = (cmplx *) calloc(sizeof(cmplx), N);
        for (size_t i = 0; i < N; ++i) {
            input[i].real = i;
            input[i].imag = 0;
        }
        for (size_t i = 0; i < N; ++i) {
            printf("(%f %f) 	", input[i].real, input[i].imag);
        }
        for (int i = 0; i < 100; i++) {
            FFT(input, output, N);
        }
        printf("
    ");
        IFFT(output, input, N);
        for (size_t i = 0; i < N; ++i) {
            printf("(%f %f) 	", input[i].real, input[i].imag);
        }
        free(input);
        free(output);
        getchar();
        return 0;
    }

    项目地址:

    https://github.com/cpuimage/cpuFFT

    想了好久都没想到取啥名字好,最后还是选择了cpu这个前缀。

    以上,权当抛砖引玉。

    若有其他相关问题或者需求也可以邮件联系俺探讨。

    邮箱地址是: 
    gaozhihan@vip.qq.com

  • 相关阅读:
    关于 ‘--exec’ 参数( find 命令)及介绍 ‘xargs ’命令区别(新版)
    关于 ‘--exec’ 参数( find 命令)及介绍 ‘xargs ’命令区别
    关于重装系统那点事
    CentOS 中文支持
    CentOS下 Yum 损坏与重建
    [转] Linux 中提高 VsFTP 服务器的安全性
    java之正则表达式的使用1
    [转载]java正则表达式
    myeclipse10修改全局jsp编码格式为gbk
    好的网站
  • 原文地址:https://www.cnblogs.com/cpuimage/p/9452536.html
Copyright © 2011-2022 走看看