一、工厂模式
1、定义统一的接口,并在接口中定义要实现的抽象方法。
2、创建接口的具体实现类,并实现抽象方法。
3、创建一个工厂类,根据传递的参数,生成具体的实现类对象,执行具体的方法。
优点: 1、一个调用者想创建一个对象,只要知道其名称就可以了。 2、扩展性高,如果想增加一个产品,只要扩展一个工厂类就可以。 3、屏蔽产品的具体实现,调用者只关心产品的接口。
缺点:每次增加一个产品时,都需要增加一个具体类和对象实现工厂,使得系统中类的个数成倍增加,在一定程度上增加了系统的复杂度,同时也增加了系统具体类的依赖。这并不是什么好事。
注意事项:作为一种创建类模式,在任何需要生成复杂对象的地方,都可以使用工厂方法模式。有一点需要注意的地方就是复杂对象适合使用工厂模式,而简单对象,特别是只需要通过 new 就可以完成创建的对象,无需使用工厂模式。如果使用工厂模式,就需要引入一个工厂类,会增加系统的复杂度。
二、抽象工厂模式
1、定义统一的接口,并在接口中定义要实现的抽象方法。
//为形状创建一个接口。 public interface Shape { void draw(); } //为颜色创建一个接口。 public interface Color { void fill(); }
2、创建接口的具体实现,并实现抽象方法。
//创建形状的实现类。 public class Rectangle implements Shape { @Override public void draw() { System.out.println("Inside Rectangle::draw() method."); } } //创建颜色的实现类 public class Red implements Color { @Override public void fill() { System.out.println("Inside Red::fill() method."); } }
3、创建一个抽象的工厂,用于根据不同的信息生成不同的具体生产对象的工厂。
//为 Color 和 Shape 对象创建抽象类来获取工厂。 public abstract class AbstractFactory { public abstract Color getColor(String color); public abstract Shape getShape(String shape) ; }
4、每一个生产具体对象的工厂都继承上个步骤定义的抽象工厂,根据不同的信息生成不同的具体对象。
//创建扩展了 AbstractFactory 的工厂类,基于给定的信息生成实体类的对象。 public class ShapeFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ if(shapeType == null){ return null; } if(shapeType.equalsIgnoreCase("CIRCLE")){ return new Circle(); } else if(shapeType.equalsIgnoreCase("RECTANGLE")){ return new Rectangle(); } else if(shapeType.equalsIgnoreCase("SQUARE")){ return new Square(); } return null; } @Override public Color getColor(String color) { return null; } } public class ColorFactory extends AbstractFactory { @Override public Shape getShape(String shapeType){ return null; } @Override public Color getColor(String color) { if(color == null){ return null; } if(color.equalsIgnoreCase("RED")){ return new Red(); } else if(color.equalsIgnoreCase("GREEN")){ return new Green(); } else if(color.equalsIgnoreCase("BLUE")){ return new Blue(); } return null; } }
5、创建一个工厂创建器,根据不同的信息创建不同的生成具体对象的工厂。
//创建一个工厂创造器/生成器类,通过传递形状或颜色信息来获取工厂。 public class FactoryProducer { public static AbstractFactory getFactory(String choice){ if(choice.equalsIgnoreCase("SHAPE")){ return new ShapeFactory(); } else if(choice.equalsIgnoreCase("COLOR")){ return new ColorFactory(); } return null; } }
6、调用的时候需要先获取生成具体对象的工厂,然后通过工厂生成具体的对象。
优点:当一个产品族中的多个对象被设计成一起工作时,它能保证客户端始终只使用同一个产品族中的对象。
缺点:产品族扩展非常困难,要增加一个系列的某一产品,既要在修改抽象工厂的代码,又要修改具体工厂的代码。
注意事项:产品族难扩展,产品等级易扩展。
三、单例模式
1、懒汉式,线程不安全。
这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。
这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。
public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } }
2、懒汉式,线程安全。
这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。
优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。
public class Singleton { private static Singleton instance; private Singleton (){} public static synchronized Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } }
3、饿汉式
这种方式比较常用,但容易产生垃圾对象。
优点:没有加锁,执行效率会提高。
缺点:类加载时就初始化,浪费内存。
它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。
public class Singleton { private static Singleton instance = new Singleton(); private Singleton (){} public static Singleton getInstance() { return instance; } }
4、双检锁/双重校验锁(DCL,即 double-checked locking)
这种方式采用双锁机制,安全且在多线程情况下能保持高性能。
getInstance() 的性能对应用程序很关键。
public class Singleton { private volatile static Singleton singleton; private Singleton (){} public static Singleton getSingleton() { if (singleton == null) { synchronized (Singleton.class) { if (singleton == null) { singleton = new Singleton(); } } } return singleton; } }
5、登记式/静态内部类
这种方式能达到双检锁方式一样的功效,但实现更简单。对静态域使用延迟初始化,应使用这种方式而不是双检锁方式。这种方式只适用于静态域的情况,双检锁方式可在实例域需要延迟初始化时使用。
这种方式同样利用了 classloader 机制来保证初始化 instance 时只有一个线程,它跟第 3 种方式不同的是:第 3 种方式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比第 3 种方式就显得很合理。
public class Singleton { private static class SingletonHolder { private static final Singleton INSTANCE = new Singleton(); } private Singleton (){} public static final Singleton getInstance() { return SingletonHolder.INSTANCE; } }
6、枚举
这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。它更简洁,自动支持序列化机制,绝对防止多次实例化。
这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。
不能通过 reflection attack 来调用私有构造方法。
public class EnumSingleton{ private EnumSingleton(){} public static EnumSingleton getInstance(){ return Singleton.INSTANCE.getInstance(); } private static enum Singleton{ INSTANCE; private EnumSingleton singleton; //JVM会保证此方法绝对只调用一次 private Singleton(){ singleton = new EnumSingleton(); } public EnumSingleton getInstance(){ return singleton; } } }
//调用
public static void main(String[] args) { EnumSingleton obj1 = EnumSingleton.getInstance(); EnumSingleton obj2 = EnumSingleton.getInstance(); //输出结果:obj1==obj2?true System.out.println("obj1==obj2?" + (obj1==obj2)); }
经验之谈:一般情况下,不建议使用第 1 种和第 2 种懒汉方式,建议使用第 3 种饿汉方式。只有在要明确实现 lazy loading 效果时,才会使用第 5 种登记方式。如果涉及到反序列化创建对象时,可以尝试使用第 6 种枚举方式。如果有其他特殊的需求,可以考虑使用第 4 种双检锁方式。