zoukankan      html  css  js  c++  java
  • Android的消息机制

    提到消息机制,想必大家都不陌生吧,在日常开发中不可避免要涉及到这方面的内容。从开发的角度来说,Handler是Android的消息机制的上层接口,这使得在开发过程中只需要和Handler交互即可。Handler的使用过程很简单,通过它可以轻松地将一个任务切换到Handler所在的线程中去执行。由于Android的开发规范的限制,我们并不能在子线程中访问UI控件,否则就会触发程序异常,这个时候通过Handler就可以将更新的UI的操作切换到主线程中执行,因此从本质上来来说,Handler并不是专门用于更新UI的,它只是常被开发者用来更新UI。

    Android中的消息机制主要指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MessageQueue翻译过来就是消息队列,它内部存储了一组消息,以队列的形式对外提供插入和删除的过程,虽然叫做消息队列,但是它内部存储结构并不是真正的队列,而是采用单链表的数据结构来存储消息列表,Looper翻译过来就是循环,这里可以理解为消息循环。由于MessageQueue只是一个消息的存储单元,它不能去处理消息,而Looper填补了这个功能,Looper会无限循环的形式去查找是否有新的消息,如果有的话就处理消息,否则就中一直等待。Looper中还有一个特殊的概念,那就是ThreadLocal,Threadlocal并不是线程,它的作用是可以在每个线程中存储数据。

    我们知道,Handler创建的时候会采用当前线程的Looper来构造消息循环系统,那么Handler内部如何获取到当前线程的Looper呢,这就要使用ThreadLocal了,ThreadLocal可以在不同的线程中互不干扰地存储并提供数据,通过ThreadLocal可以轻松获取每个线程的Looper。需要注意的是,线程是默认没有Looper的,如果需要使用Handler就必须为线程创建Looper,我们经常提到的主线程,也叫UI线程,它就是ActivityThread,ActivityThread被创建时就会初始化Looper,这也是在主线程中默认可以使用Handler的原因。

    Android的消息机制概述

    我们知道Handler的主要作用是将一个任务切换到某个指定的线程中去执行,那么Android为什么要提供这个功能呢,这是因为Android规定访问UI只能在主线程中进行,如果子线程中访问UI,那么程序就会抛出异常。

      void checkThread() {
            if (mThread != Thread.currentThread()) {
                throw new CalledFromWrongThreadException(
                        "Only the original thread that created a view hierarchy can touch its views.");
            }
        }
    

    这是ViewRootImpl的checkThread方法,从这段代码就可以看出,如果不在当前线程,就会抛出异常。同时呢,Android不建议在主线程中进行耗时操作, 否则会导致程序无法响应,即ANR。那么系统为什么允许在子线程中访问UI呢,这是因为Android中的UI控件并不是线程安全,它同时也延伸了Java系统中默认进程的话会产生默认的单线程习惯,当用户点击、滑动等事件操作时,UI线程是负责分发的,统一管理会更高效点,采取单线程来处理UI操作,对于开发者来说也不是很麻烦,只是需要通过Handler切换下UI访问的执行线程即可。

    简单描述下Handler的工作原理,Handler创建完毕后,这个时候内部的Looper以及MessageQueue就可以和Handler一起协同工作,然后通过Handler的post方法将一个Runnable投递到Handler内部的Looper中去处理,也可以通过Handler的send方法发送一个消息,这个消息同样会在Looper中去处理。

    Android消息机制分析

    先看下整体的架构图:

    整体UML图

    • Looper有一个MessageQueue消息队列
    • MessageQueue有一组待处理的Message
    • Message中有一个用于处理消息的Handler
    • Handler中有Looper和MessageQueue

    Looper的工作原理

    Looper在Android的消息机制扮演着消息循环的角色,具体来说就是它会不停地从MessageQueue中查看是否有新消息过来,如果有新的消息的就会立刻处理,否则就一直阻塞在那里。首先看下它的构造方法:

      private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
      }
    

    在构造方法中,它会创建一个MessageQueue对象,然后将当前线程的对象给保存起来。我们知道,Handler的工作需要Looper,没有Looper线程就会报错,那么如何为一个线程创建Looper呢,有以下方法:

        public static void prepare() {
            prepare(true);
        }
    
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    
        public static void prepareMainLooper() {
            prepare(false);
            synchronized (Looper.class) {
                if (sMainLooper != null) {
                    throw new IllegalStateException("The main Looper has already been prepared.");
                }
                sMainLooper = myLooper();
            }
        }
    

    从中我们可以看出,每个线程只有一个Looper,多创建一个会报错,然后prepareMainLooper这个方法主要给主线程也就是ActivityThread创建Looper使用,其本质也是通过prepare方法来实现的。

        public void quit() {
            mQueue.quit(false);
        }
    
        public void quitSafely() {
            mQueue.quit(true);
        }
    
    

    Looper提供了quit和quitSafely方法退出一个Looper,这两者最主要区别在于一个设定退出标记,一个是把消息队列中的已有消息处理完毕后才安全地退出。

    当然还有Looper的loop方法是最核心的。

    public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                try {
                    msg.target.dispatchMessage(msg);
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    这个也比较好理解,loop方法是一个死循环,唯一跳出循环的方式就是MessageQueue的next方法返回了null。Looper就会调用MessageQueue的quit或者quitSafely方法来通知消息队列退出,当消息队列被标记为退出状态时,它的next方法就会返回null,也就是说looper必须退出,否则loop方法就会无限循序下去。

    MessageQueue工作原理

    在Android中MessageQueue主要包含两个操作:插入和读取。读取操作本身会伴随着删除操作,插入和读取对应的方法分别为enqueueMessage和next,其中enqueueMessage的作用是往消息队列中插入一条消息,而next的作用是从消息队列中取出一条消息并将其从消息队列中移除。在MessageQueue内部通过一个单链表的数据结构来维护消息列表,单链表在插入和删除上比较有优势。

    看下enqueueMessage代码:

    boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    主要操作其实就是单链表的插入操作。

    看下next代码:

     Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    可以发现next方法就是一个无限循环的方法,如果消息队列中没有消息,那么next方法就会一直阻塞在这里,当有新消息到来时,next方法会返回这条消息并将其从单链表中移除。

    Message

    每个消息用Message表示,Message主要包含以下内容:

    数据类型 成员变量 解释
    int what 消息类别
    long when 消息触发时间
    int arg1 参数1
    int arg2 参数2
    Object obj 消息内容
    Handler target 消息响应方
    Runnable callback 回调方法

    创建消息的过程,就是填充消息的上述内容的一项或多项。

    消息池

    在代码中,可能经常看到recycle()方法,咋一看,可能是在做虚拟机的gc()相关的工作,其实不然,这是用于把消息加入到消息池的作用。这样的好处是,当消息池不为空时,可以直接从消息池中获取Message对象,而不是直接创建,提高效率。

    静态变量sPool的数据类型为Message,通过next成员变量,维护一个消息池;静态变量MAX_POOL_SIZE代表消息池的可用大小;消息池的默认大小为50。

    消息池常用的操作方法是obtain()和recycle()。

    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null; //从sPool中取出一个Message对象,并消息链表断开
                m.flags = 0; // 清除in-use flag
                sPoolSize--; //消息池的可用大小进行减1操作
                return m;
            }
        }
        return new Message(); // 当消息池为空时,直接创建Message对象
    }
    

    obtain(),从消息池取Message,都是把消息池表头的Message取走,再把表头指向next。

    public void recycle() {
        if (isInUse()) { //判断消息是否正在使用
            if (gCheckRecycle) { //Android 5.0以后的版本默认为true,之前的版本默认为false.
                throw new IllegalStateException("This message cannot be recycled because it is still in use.");
            }
            return;
        }
        recycleUnchecked();
    }
    
    //对于不再使用的消息,加入到消息池
    void recycleUnchecked() {
        //将消息标示位置为IN_USE,并清空消息所有的参数。
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;
        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) { //当消息池没有满时,将Message对象加入消息池
                next = sPool;
                sPool = this;
                sPoolSize++; //消息池的可用大小进行加1操作
            }
        }
    }
    

    recycle(),将Message加入到消息池的过程,都是把Message加到链表的表头。

    Handler工作原理

    Handler的工作主要包含消息的发送和接收过程。消息发送可以通过post的一系列的方法以及send的一系列方法来实现,post其实也是通过send的方法来实现的。

    看下Handler的构造方法。

        public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
    
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
    

    从中可以看到关联MessageQueue、Looper,所以在Handler之前Looper要prepare先,如果没有Looper的话,就会抛出“Can't create handler inside thread that has not called Looper.prepare()”这句话。

        public final boolean sendMessage(Message msg)
        {
            return sendMessageDelayed(msg, 0);
        }
    
        public final boolean sendEmptyMessage(int what)
        {
            return sendEmptyMessageDelayed(what, 0);
        }
    
        public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
            Message msg = Message.obtain();
            msg.what = what;
            return sendMessageDelayed(msg, delayMillis);
         }
    
         public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
            Message msg = Message.obtain();
            msg.what = what;
            return sendMessageAtTime(msg, uptimeMillis);
          }
    
         public final boolean sendMessageDelayed(Message msg, long delayMillis)
         {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
         }
    
         public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                        this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            return enqueueMessage(queue, msg, uptimeMillis);
          }
    
         public final boolean sendMessageAtFrontOfQueue(Message msg) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            return enqueueMessage(queue, msg, 0);
          }
    

    从中可以看出,最终都是调用sendMessageAtTime/sendMessageAtFrontOfQueue方法,进而执行enqueueMessage方法,最终把消息发送到MessageQueue队列中。
    相关消息发送方式

    那么消息又是如何在Handler处理的呢?

        public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
    
    

    通过dispatchMessage来处理消息的。

    ThreadLocal工作原理

    ThreadLocal是一个 线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据,对于其他线程来说是无法获取到数据。在日常开发中用到ThreadLocal的场景很少,但是在某些特殊的场景下,通过ThreadLocal可以轻松地实现一些看起来很复杂的功能,这一点在Android源码中也有所体现,比如Looper、ActivityThread以及AMS中都用到ThreadLocal。

    ThreadLocal.set(T value):将value存储到当前线程的TLS区域。

      public void set(T value) {
          Thread currentThread = Thread.currentThread(); //获取当前线程
          Values values = values(currentThread); //查找当前线程的本地储存区
          if (values == null) {
              //当线程本地存储区,尚未存储该线程相关信息时,则创建Values对象
              values = initializeValues(currentThread);
          }
          //保存数据value到当前线程this
          values.put(this, value);
      }
    

    在set方法中,首先会通过values方法来获取当前线程的ThreadLocal数据,通过put方式去获取。

    ThreadLocal.get():获取当前线程TLS区域的数据。

    public T get() {
          Thread currentThread = Thread.currentThread(); //获取当前线程
          Values values = values(currentThread); //查找当前线程的本地储存区
          if (values != null) {
              Object[] table = values.table;
              int index = hash & values.mask;
              if (this.reference == table[index]) {
                  return (T) table[index + 1]; //返回当前线程储存区中的数据
              }
          } else {
              //创建Values对象
              values = initializeValues(currentThread);
          }
          return (T) values.getAfterMiss(this); //从目标线程存储区没有查询是则返回null
      }
    

    get方法同样是取出当前线程的localValues对象,如果这个对象为null,那么就返回初始值。

    在Looper源码中,有这么一句:

       // sThreadLocal.get() will return null unless you've called prepare().
        static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    

    从ThreadLocal的set和get方法可以看出,它们所操作的对象都是当前线程的localValues对象的table数组,因此在不同线程中访问同一个ThreadLocal的set和get方法,它们对ThreadLocal所做的读/写操作仅限于各自线程的内部,这也就是为什么ThreadLocal可以在多个线程中互不干扰地存储和修改数据。

    所以,整体来说,Handler、Looper、MessageQueue、Message这三者之间的关系如下:
    消息机制关系图

    主线程的消息循环

    Android的主线程就是ActivityThread,主线程的入口方法在main,在main方法中系统会通过Looper.prepareMainLooper方法来创建主线程的Looper以及MessageQueue,并通过Looper.loop方法来开启主线程的消息循环。

    public static void main(String[] args) {
            Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
            SamplingProfilerIntegration.start();
    
            // CloseGuard defaults to true and can be quite spammy.  We
            // disable it here, but selectively enable it later (via
            // StrictMode) on debug builds, but using DropBox, not logs.
            CloseGuard.setEnabled(false);
    
            Environment.initForCurrentUser();
    
            // Set the reporter for event logging in libcore
            EventLogger.setReporter(new EventLoggingReporter());
    
            // Make sure TrustedCertificateStore looks in the right place for CA certificates
            final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
            TrustedCertificateStore.setDefaultUserDirectory(configDir);
    
            Process.setArgV0("<pre-initialized>");
    
            Looper.prepareMainLooper();
    
            ActivityThread thread = new ActivityThread();
            thread.attach(false);
    
            if (sMainThreadHandler == null) {
                sMainThreadHandler = thread.getHandler();
            }
    
            if (false) {
                Looper.myLooper().setMessageLogging(new
                        LogPrinter(Log.DEBUG, "ActivityThread"));
            }
    
            // End of event ActivityThreadMain.
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
            Looper.loop();
    
            throw new RuntimeException("Main thread loop unexpectedly exited");
        }
    

    主线程的消息循环开始以后,ActivityThread还需要一个Handler来和消息队列进行交互,这个Handler就是ActivityThread.H,它内部定义了一组消息类型,主要包括了四大组件的启动和停止等过程。

    
        private class H extends Handler {
            public static final int LAUNCH_ACTIVITY         = 100;
            public static final int PAUSE_ACTIVITY          = 101;
            public static final int PAUSE_ACTIVITY_FINISHING= 102;
            public static final int STOP_ACTIVITY_SHOW      = 103;
            public static final int STOP_ACTIVITY_HIDE      = 104;
            public static final int SHOW_WINDOW             = 105;
            public static final int HIDE_WINDOW             = 106;
            public static final int RESUME_ACTIVITY         = 107;
            public static final int SEND_RESULT             = 108;
            public static final int DESTROY_ACTIVITY        = 109;
            public static final int BIND_APPLICATION        = 110;
            public static final int EXIT_APPLICATION        = 111;
            public static final int NEW_INTENT              = 112;
            public static final int RECEIVER                = 113;
            public static final int CREATE_SERVICE          = 114;
            public static final int SERVICE_ARGS            = 115;
            public static final int STOP_SERVICE            = 116;
    
            public static final int CONFIGURATION_CHANGED   = 118;
            public static final int CLEAN_UP_CONTEXT        = 119;
            public static final int GC_WHEN_IDLE            = 120;
            public static final int BIND_SERVICE            = 121;
            public static final int UNBIND_SERVICE          = 122;
            public static final int DUMP_SERVICE            = 123;
            public static final int LOW_MEMORY              = 124;
            public static final int ACTIVITY_CONFIGURATION_CHANGED = 125;
            public static final int RELAUNCH_ACTIVITY       = 126;
            public static final int PROFILER_CONTROL        = 127;
            public static final int CREATE_BACKUP_AGENT     = 128;
            public static final int DESTROY_BACKUP_AGENT    = 129;
            public static final int SUICIDE                 = 130;
            public static final int REMOVE_PROVIDER         = 131;
            public static final int ENABLE_JIT              = 132;
            public static final int DISPATCH_PACKAGE_BROADCAST = 133;
            public static final int SCHEDULE_CRASH          = 134;
            public static final int DUMP_HEAP               = 135;
            public static final int DUMP_ACTIVITY           = 136;
            public static final int SLEEPING                = 137;
            public static final int SET_CORE_SETTINGS       = 138;
            public static final int UPDATE_PACKAGE_COMPATIBILITY_INFO = 139;
            public static final int TRIM_MEMORY             = 140;
            public static final int DUMP_PROVIDER           = 141;
            public static final int UNSTABLE_PROVIDER_DIED  = 142;
            public static final int REQUEST_ASSIST_CONTEXT_EXTRAS = 143;
            public static final int TRANSLUCENT_CONVERSION_COMPLETE = 144;
            public static final int INSTALL_PROVIDER        = 145;
            public static final int ON_NEW_ACTIVITY_OPTIONS = 146;
            public static final int CANCEL_VISIBLE_BEHIND = 147;
            public static final int BACKGROUND_VISIBLE_BEHIND_CHANGED = 148;
            public static final int ENTER_ANIMATION_COMPLETE = 149;
            public static final int START_BINDER_TRACKING = 150;
            public static final int STOP_BINDER_TRACKING_AND_DUMP = 151;
            public static final int MULTI_WINDOW_MODE_CHANGED = 152;
            public static final int PICTURE_IN_PICTURE_MODE_CHANGED = 153;
            public static final int LOCAL_VOICE_INTERACTION_STARTED = 154;
    
            String codeToString(int code) {
                if (DEBUG_MESSAGES) {
                    switch (code) {
                        case LAUNCH_ACTIVITY: return "LAUNCH_ACTIVITY";
                        case PAUSE_ACTIVITY: return "PAUSE_ACTIVITY";
                        case PAUSE_ACTIVITY_FINISHING: return "PAUSE_ACTIVITY_FINISHING";
                        case STOP_ACTIVITY_SHOW: return "STOP_ACTIVITY_SHOW";
                        case STOP_ACTIVITY_HIDE: return "STOP_ACTIVITY_HIDE";
                        case SHOW_WINDOW: return "SHOW_WINDOW";
                        case HIDE_WINDOW: return "HIDE_WINDOW";
                        case RESUME_ACTIVITY: return "RESUME_ACTIVITY";
                        case SEND_RESULT: return "SEND_RESULT";
                        case DESTROY_ACTIVITY: return "DESTROY_ACTIVITY";
                        case BIND_APPLICATION: return "BIND_APPLICATION";
                        case EXIT_APPLICATION: return "EXIT_APPLICATION";
                        case NEW_INTENT: return "NEW_INTENT";
                        case RECEIVER: return "RECEIVER";
                        case CREATE_SERVICE: return "CREATE_SERVICE";
                        case SERVICE_ARGS: return "SERVICE_ARGS";
                        case STOP_SERVICE: return "STOP_SERVICE";
                        case CONFIGURATION_CHANGED: return "CONFIGURATION_CHANGED";
                        case CLEAN_UP_CONTEXT: return "CLEAN_UP_CONTEXT";
                        case GC_WHEN_IDLE: return "GC_WHEN_IDLE";
                        case BIND_SERVICE: return "BIND_SERVICE";
                        case UNBIND_SERVICE: return "UNBIND_SERVICE";
                        case DUMP_SERVICE: return "DUMP_SERVICE";
                        case LOW_MEMORY: return "LOW_MEMORY";
                        case ACTIVITY_CONFIGURATION_CHANGED: return "ACTIVITY_CONFIGURATION_CHANGED";
                        case RELAUNCH_ACTIVITY: return "RELAUNCH_ACTIVITY";
                        case PROFILER_CONTROL: return "PROFILER_CONTROL";
                        case CREATE_BACKUP_AGENT: return "CREATE_BACKUP_AGENT";
                        case DESTROY_BACKUP_AGENT: return "DESTROY_BACKUP_AGENT";
                        case SUICIDE: return "SUICIDE";
                        case REMOVE_PROVIDER: return "REMOVE_PROVIDER";
                        case ENABLE_JIT: return "ENABLE_JIT";
                        case DISPATCH_PACKAGE_BROADCAST: return "DISPATCH_PACKAGE_BROADCAST";
                        case SCHEDULE_CRASH: return "SCHEDULE_CRASH";
                        case DUMP_HEAP: return "DUMP_HEAP";
                        case DUMP_ACTIVITY: return "DUMP_ACTIVITY";
                        case SLEEPING: return "SLEEPING";
                        case SET_CORE_SETTINGS: return "SET_CORE_SETTINGS";
                        case UPDATE_PACKAGE_COMPATIBILITY_INFO: return "UPDATE_PACKAGE_COMPATIBILITY_INFO";
                        case TRIM_MEMORY: return "TRIM_MEMORY";
                        case DUMP_PROVIDER: return "DUMP_PROVIDER";
                        case UNSTABLE_PROVIDER_DIED: return "UNSTABLE_PROVIDER_DIED";
                        case REQUEST_ASSIST_CONTEXT_EXTRAS: return "REQUEST_ASSIST_CONTEXT_EXTRAS";
                        case TRANSLUCENT_CONVERSION_COMPLETE: return "TRANSLUCENT_CONVERSION_COMPLETE";
                        case INSTALL_PROVIDER: return "INSTALL_PROVIDER";
                        case ON_NEW_ACTIVITY_OPTIONS: return "ON_NEW_ACTIVITY_OPTIONS";
                        case CANCEL_VISIBLE_BEHIND: return "CANCEL_VISIBLE_BEHIND";
                        case BACKGROUND_VISIBLE_BEHIND_CHANGED: return "BACKGROUND_VISIBLE_BEHIND_CHANGED";
                        case ENTER_ANIMATION_COMPLETE: return "ENTER_ANIMATION_COMPLETE";
                        case MULTI_WINDOW_MODE_CHANGED: return "MULTI_WINDOW_MODE_CHANGED";
                        case PICTURE_IN_PICTURE_MODE_CHANGED: return "PICTURE_IN_PICTURE_MODE_CHANGED";
                        case LOCAL_VOICE_INTERACTION_STARTED: return "LOCAL_VOICE_INTERACTION_STARTED";
                    }
                }
                return Integer.toString(code);
            }
            public void handleMessage(Message msg) {
                if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
                switch (msg.what) {
                    case LAUNCH_ACTIVITY: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                        final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
    
                        r.packageInfo = getPackageInfoNoCheck(
                                r.activityInfo.applicationInfo, r.compatInfo);
                        handleLaunchActivity(r, null, "LAUNCH_ACTIVITY");
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case RELAUNCH_ACTIVITY: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                        ActivityClientRecord r = (ActivityClientRecord)msg.obj;
                        handleRelaunchActivity(r);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case PAUSE_ACTIVITY: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                        SomeArgs args = (SomeArgs) msg.obj;
                        handlePauseActivity((IBinder) args.arg1, false,
                                (args.argi1 & USER_LEAVING) != 0, args.argi2,
                                (args.argi1 & DONT_REPORT) != 0, args.argi3);
                        maybeSnapshot();
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case PAUSE_ACTIVITY_FINISHING: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                        SomeArgs args = (SomeArgs) msg.obj;
                        handlePauseActivity((IBinder) args.arg1, true, (args.argi1 & USER_LEAVING) != 0,
                                args.argi2, (args.argi1 & DONT_REPORT) != 0, args.argi3);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case STOP_ACTIVITY_SHOW: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                        SomeArgs args = (SomeArgs) msg.obj;
                        handleStopActivity((IBinder) args.arg1, true, args.argi2, args.argi3);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case STOP_ACTIVITY_HIDE: {
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStop");
                        SomeArgs args = (SomeArgs) msg.obj;
                        handleStopActivity((IBinder) args.arg1, false, args.argi2, args.argi3);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                    } break;
                    case SHOW_WINDOW:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityShowWindow");
                        handleWindowVisibility((IBinder)msg.obj, true);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case HIDE_WINDOW:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityHideWindow");
                        handleWindowVisibility((IBinder)msg.obj, false);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case RESUME_ACTIVITY:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityResume");
                        SomeArgs args = (SomeArgs) msg.obj;
                        handleResumeActivity((IBinder) args.arg1, true, args.argi1 != 0, true,
                                args.argi3, "RESUME_ACTIVITY");
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case SEND_RESULT:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDeliverResult");
                        handleSendResult((ResultData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case DESTROY_ACTIVITY:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityDestroy");
                        handleDestroyActivity((IBinder)msg.obj, msg.arg1 != 0,
                                msg.arg2, false);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case BIND_APPLICATION:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");
                        AppBindData data = (AppBindData)msg.obj;
                        handleBindApplication(data);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case EXIT_APPLICATION:
                        if (mInitialApplication != null) {
                            mInitialApplication.onTerminate();
                        }
                        Looper.myLooper().quit();
                        break;
                    case NEW_INTENT:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityNewIntent");
                        handleNewIntent((NewIntentData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case RECEIVER:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastReceiveComp");
                        handleReceiver((ReceiverData)msg.obj);
                        maybeSnapshot();
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case CREATE_SERVICE:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceCreate: " + String.valueOf(msg.obj)));
                        handleCreateService((CreateServiceData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case BIND_SERVICE:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceBind");
                        handleBindService((BindServiceData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case UNBIND_SERVICE:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceUnbind");
                        handleUnbindService((BindServiceData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case SERVICE_ARGS:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, ("serviceStart: " + String.valueOf(msg.obj)));
                        handleServiceArgs((ServiceArgsData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case STOP_SERVICE:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "serviceStop");
                        handleStopService((IBinder)msg.obj);
                        maybeSnapshot();
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case CONFIGURATION_CHANGED:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "configChanged");
                        mCurDefaultDisplayDpi = ((Configuration)msg.obj).densityDpi;
                        mUpdatingSystemConfig = true;
                        handleConfigurationChanged((Configuration)msg.obj, null);
                        mUpdatingSystemConfig = false;
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case CLEAN_UP_CONTEXT:
                        ContextCleanupInfo cci = (ContextCleanupInfo)msg.obj;
                        cci.context.performFinalCleanup(cci.who, cci.what);
                        break;
                    case GC_WHEN_IDLE:
                        scheduleGcIdler();
                        break;
                    case DUMP_SERVICE:
                        handleDumpService((DumpComponentInfo)msg.obj);
                        break;
                    case LOW_MEMORY:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "lowMemory");
                        handleLowMemory();
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case ACTIVITY_CONFIGURATION_CHANGED:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityConfigChanged");
                        handleActivityConfigurationChanged((ActivityConfigChangeData) msg.obj,
                                msg.arg1 == 1 ? REPORT_TO_ACTIVITY : !REPORT_TO_ACTIVITY);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case PROFILER_CONTROL:
                        handleProfilerControl(msg.arg1 != 0, (ProfilerInfo)msg.obj, msg.arg2);
                        break;
                    case CREATE_BACKUP_AGENT:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupCreateAgent");
                        handleCreateBackupAgent((CreateBackupAgentData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case DESTROY_BACKUP_AGENT:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "backupDestroyAgent");
                        handleDestroyBackupAgent((CreateBackupAgentData)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case SUICIDE:
                        Process.killProcess(Process.myPid());
                        break;
                    case REMOVE_PROVIDER:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "providerRemove");
                        completeRemoveProvider((ProviderRefCount)msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case ENABLE_JIT:
                        ensureJitEnabled();
                        break;
                    case DISPATCH_PACKAGE_BROADCAST:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "broadcastPackage");
                        handleDispatchPackageBroadcast(msg.arg1, (String[])msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case SCHEDULE_CRASH:
                        throw new RemoteServiceException((String)msg.obj);
                    case DUMP_HEAP:
                        handleDumpHeap(msg.arg1 != 0, (DumpHeapData)msg.obj);
                        break;
                    case DUMP_ACTIVITY:
                        handleDumpActivity((DumpComponentInfo)msg.obj);
                        break;
                    case DUMP_PROVIDER:
                        handleDumpProvider((DumpComponentInfo)msg.obj);
                        break;
                    case SLEEPING:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "sleeping");
                        handleSleeping((IBinder)msg.obj, msg.arg1 != 0);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case SET_CORE_SETTINGS:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "setCoreSettings");
                        handleSetCoreSettings((Bundle) msg.obj);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case UPDATE_PACKAGE_COMPATIBILITY_INFO:
                        handleUpdatePackageCompatibilityInfo((UpdateCompatibilityData)msg.obj);
                        break;
                    case TRIM_MEMORY:
                        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "trimMemory");
                        handleTrimMemory(msg.arg1);
                        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                        break;
                    case UNSTABLE_PROVIDER_DIED:
                        handleUnstableProviderDied((IBinder)msg.obj, false);
                        break;
                    case REQUEST_ASSIST_CONTEXT_EXTRAS:
                        handleRequestAssistContextExtras((RequestAssistContextExtras)msg.obj);
                        break;
                    case TRANSLUCENT_CONVERSION_COMPLETE:
                        handleTranslucentConversionComplete((IBinder)msg.obj, msg.arg1 == 1);
                        break;
                    case INSTALL_PROVIDER:
                        handleInstallProvider((ProviderInfo) msg.obj);
                        break;
                    case ON_NEW_ACTIVITY_OPTIONS:
                        Pair<IBinder, ActivityOptions> pair = (Pair<IBinder, ActivityOptions>) msg.obj;
                        onNewActivityOptions(pair.first, pair.second);
                        break;
                    case CANCEL_VISIBLE_BEHIND:
                        handleCancelVisibleBehind((IBinder) msg.obj);
                        break;
                    case BACKGROUND_VISIBLE_BEHIND_CHANGED:
                        handleOnBackgroundVisibleBehindChanged((IBinder) msg.obj, msg.arg1 > 0);
                        break;
                    case ENTER_ANIMATION_COMPLETE:
                        handleEnterAnimationComplete((IBinder) msg.obj);
                        break;
                    case START_BINDER_TRACKING:
                        handleStartBinderTracking();
                        break;
                    case STOP_BINDER_TRACKING_AND_DUMP:
                        handleStopBinderTrackingAndDump((ParcelFileDescriptor) msg.obj);
                        break;
                    case MULTI_WINDOW_MODE_CHANGED:
                        handleMultiWindowModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                        break;
                    case PICTURE_IN_PICTURE_MODE_CHANGED:
                        handlePictureInPictureModeChanged((IBinder) msg.obj, msg.arg1 == 1);
                        break;
                    case LOCAL_VOICE_INTERACTION_STARTED:
                        handleLocalVoiceInteractionStarted((IBinder) ((SomeArgs) msg.obj).arg1,
                                (IVoiceInteractor) ((SomeArgs) msg.obj).arg2);
                        break;
                }
                Object obj = msg.obj;
                if (obj instanceof SomeArgs) {
                    ((SomeArgs) obj).recycle();
                }
                if (DEBUG_MESSAGES) Slog.v(TAG, "<<< done: " + codeToString(msg.what));
            }
    

    ActivityThread通过ApplicationThread和AMS进行进程间通信,AMS以进程间通信的方式完成ActivityThread的请求回调ApplicationThread中Binder方法然后ApplicationThread向H发送消息,H收到消息后会将ApplicationThread的逻辑切换到ActivityThread中去执行,即切换到主线程中去执行,整个过程就是主线程的消息循环模型。

    HandlerThread

    HandlerThread类的源码:

    public class HandlerThread extends Thread {
        int mPriority;
        int mTid = -1;
        Looper mLooper;
    
        public HandlerThread(String name) {
            super(name);
            mPriority = Process.THREAD_PRIORITY_DEFAULT;
        }
       
        public HandlerThread(String name, int priority) {
            super(name);
            mPriority = priority;
        }
      
        protected void onLooperPrepared() {
        }
    
        @Override
        public void run() {
            mTid = Process.myTid();
            Looper.prepare();
            synchronized (this) {
                mLooper = Looper.myLooper();
                notifyAll();
            }
            Process.setThreadPriority(mPriority);
            onLooperPrepared();
            Looper.loop();
            mTid = -1;
        }
        
        public Looper getLooper() {
            if (!isAlive()) {
                return null;
            }
            
            // If the thread has been started, wait until the looper has been created.
            synchronized (this) {
                while (isAlive() && mLooper == null) {
                    try {
                        wait();
                    } catch (InterruptedException e) {
                    }
                }
            }
            return mLooper;
        }
    
        public boolean quit() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quit();
                return true;
            }
            return false;
        }
      
        public boolean quitSafely() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quitSafely();
                return true;
            }
            return false;
        }
    
        /**
         * Returns the identifier of this thread. See Process.myTid().
         */
        public int getThreadId() {
            return mTid;
        }
    }
    

    可以看到HandlerThread继承于Thread类,在获取Looper对象时候,当线程已经启动,则等待直到looper创建完成才能获取,从本质上看HandlerThread是对Thread的封装,主要用途在于多个线程的通信,会有同步的问题,那么Android对此直接提供了HandlerThread类。

    HandlerThread实战

    在HandlerThread线程中运行Loop()方法,在其他线程中通过Handler发送消息到HandlerThread线程。通过wait/notifyAll的方式,有效地解决了多线程的同步问题。从源码中我们也可以看到当looper没获取成功就会阻塞,然后有运行完就会去唤醒所有阻塞的线程。

    // Step 1: 创建并启动HandlerThread线程,内部包含Looper
    HandlerThread handlerThread = new HandlerThread("test");
    handlerThread.start();
    
    // Step 2: 创建Handler
    Handler handler = new Handler(handlerThread.getLooper());
    
    // Step 3: 发送消息
    handler.post(new Runnable() {
    
            @Override
            public void run() {
                System.out.println("thread id="+Thread.currentThread().getId());
            }
        });
    

    阅读扩展

    源于对掌握的Android开发基础点进行整理,罗列下已经总结的文章,从中可以看到技术积累的过程。
    1,Android系统简介
    2,ProGuard代码混淆
    3,讲讲Handler+Looper+MessageQueue关系
    4,Android图片加载库理解
    5,谈谈Android运行时权限理解
    6,EventBus初理解
    7,Android 常见工具类
    8,对于Fragment的一些理解
    9,Android 四大组件之 " Activity "
    10,Android 四大组件之" Service "
    11,Android 四大组件之“ BroadcastReceiver "
    12,Android 四大组件之" ContentProvider "
    13,讲讲 Android 事件拦截机制
    14,Android 动画的理解
    15,Android 生命周期和启动模式
    16,Android IPC 机制
    17,View 的事件体系
    18,View 的工作原理
    19,理解 Window 和 WindowManager
    20,Activity 启动过程分析
    21,Service 启动过程分析
    22,Android 性能优化
    23,Android 消息机制
    24,Android Bitmap相关
    25,Android 线程和线程池
    26,Android 中的 Drawable 和动画
    27,RecylerView 中的装饰者模式
    28,Android 触摸事件机制
    29,Android 事件机制应用
    30,Cordova 框架的一些理解
    31,有关 Android 插件化思考
    32,开发人员必备技能——单元测试

  • 相关阅读:
    C# 学习历程——接口
    C# 学习历程——类的封装,继承与多态
    C# 学习历程——C#基础
    C# 学习历程——Hello World
    python(14)---发邮件、写日志、操作redis数据库
    python(13)——内置函数
    python(12)---导入模块
    HTML操作之DOM操作
    HTML基础之CSS
    HTML基础之HTML标签
  • 原文地址:https://www.cnblogs.com/cr330326/p/6408617.html
Copyright © 2011-2022 走看看