一.概述
- MapReduce源自 Google的MapReduce论文,发表于2004年12月
- 优点:海量数据离线处理&易开发&易运行
- 缺点:实时流式运算困难
二.wordcount分词系统案例入门
输入通过InputFormat读取,每读一行交由map处理,经过Shuffling分序丢到Reducing上面处理,最后通过OutputFormat把记录输出到文件系统(HDFS)上面去。
java源码:
package com.cracker.hadoop.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * 使用MapReduce开发WordCount应用程序 */ public class WordCountApp { /** * Map:读取输入的文件 */ public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> { LongWritable one = new LongWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 接收到的每一行数据 String line = value.toString(); //按照指定分隔符进行拆分 String[] words = line.split(" "); for (String word : words) { // 通过上下文把map的处理结果输出 context.write(new Text(word), one); } } } /** * Reduce:归并操作 */ public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { long sum = 0; for (LongWritable value : values) { // 求key出现的次数总和 sum += value.get(); } // 最终统计结果的输出 context.write(key, new LongWritable(sum)); } } /** * 定义Driver:封装了MapReduce作业的所有信息 */ public static void main(String[] args) throws Exception { //创建Configuration Configuration configuration = new Configuration(); //创建Job Job job = Job.getInstance(configuration, "wordcount"); //设置job的处理类 job.setJarByClass(WordCountApp.class); //设置作业处理的输入路径 FileInputFormat.setInputPaths(job, new Path(args[0])); //设置map相关参数 job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); //设置reduce相关参数 job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); //设置作业处理的输出路径 FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
相关命令
本地编译
mvn clean package -DskipTests
服务器
hadoop jar /root/app/hadoop-train-1.0.jar com.cracker.hadoop.mapreduce.WordCountApp hdfs://localhost:8020/hello.txt hdfs://localhost:8020/output/wc