zoukankan      html  css  js  c++  java
  • POJ 3169 Layout

    Layout

    Time Limit: 1000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 3169
    64-bit integer IO format: %lld      Java class name: Main
     
    Like everyone else, cows like to stand close to their friends when queuing for feed.  FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
     

    Input

    Line 1: Three space-separated integers: N, ML, and MD.

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
     

    Output

    Line 1: A single integer. If no line-up is possible, output -1.  If cows 1 and N can be arbitrarily far apart, output -2.  Otherwise output the greatest possible distance between cows 1 and N.
     

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Source

     
    解题:差分约束
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 1010;
    18 struct arc{
    19     int to,w;
    20     arc(int x = 0,int y = 0){
    21         to = x;
    22         w = y;
    23     }
    24 };
    25 vector<arc>g[maxn];
    26 queue<int>q;
    27 int d[maxn],cnt[maxn],N,ML,MD;
    28 bool used[maxn];
    29 void spfa(){
    30     for(int i = 1; i <= N; i++){
    31         d[i] = INF;
    32         cnt[i] = 0;
    33         used[i] = false;
    34     }
    35     d[1] = 0;
    36     used[1] = true;
    37     q.push(1);
    38     while(!q.empty()){
    39         int u = q.front();
    40         q.pop();
    41         used[u] = false;
    42         for(int i = 0; i < g[u].size(); i++){
    43             if(d[g[u][i].to] > d[u] + g[u][i].w){
    44                 d[g[u][i].to] = d[u] + g[u][i].w;
    45                 if(!used[g[u][i].to]){
    46                     q.push(g[u][i].to);
    47                     used[g[u][i].to] = true;
    48                     cnt[g[u][i].to]++;
    49                     if(cnt[g[u][i].to] > N){
    50                         puts("-1");
    51                         return;
    52                     }
    53                 }
    54             }
    55         }
    56     }
    57     if(d[N] == INF) puts("-2");
    58     else printf("%d
    ",d[N]);
    59 }
    60 int main(){
    61     int i,u,v,w;
    62     while(~scanf("%d %d %d",&N,&ML,&MD)){
    63         for(i = 0; i <= N; i++) g[i].clear();
    64         for(i = 0; i < ML; i++){
    65             scanf("%d %d %d",&u,&v,&w);
    66             g[u].push_back(arc(v,w));
    67         }
    68         for(i = 0; i < MD; i++){
    69             scanf("%d %d %d",&u,&v,&w);
    70             g[v].push_back(arc(u,-w));
    71         }
    72         for(i = 1; i < N; i++)
    73             g[i+1].push_back(arc(i,0));
    74         spfa();
    75     }
    76     return 0;
    77 }
    View Code
  • 相关阅读:
    CopyOnWriteArrayList 读写分离,弱一致性
    Java中定时器Timer致命缺点(附学习方法)
    排队打饭:公平锁和非公平锁(面试)
    母鸡下蛋实例:多线程通信生产者和消费者wait/notify和condition/await/signal条件队列
    volatile,synchronized可见性,有序性,原子性代码证明(基础硬核)
    Synchronized用法原理和锁优化升级过程(面试)
    Java中多线程安全问题实例分析
    iOS 相互引用引起内存泄露问题说明
    iOS app 集成友盟推送问题
    ios即时通讯客户端开发之-mac上基于XMPP的聊天客户端开发环境搭建
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3958850.html
Copyright © 2011-2022 走看看